1
|
Pont S, Nilly F, Berry L, Bonhoure A, Alford MA, Louis M, Nogaret P, Bains M, Lesouhaitier O, Hancock REW, Plésiat P, Blanc-Potard AB. Intracellular Pseudomonas aeruginosa persist and evade antibiotic treatment in a wound infection model. PLoS Pathog 2025; 21:e1012922. [PMID: 39946497 PMCID: PMC11825101 DOI: 10.1371/journal.ppat.1012922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Persistent bacterial infections evade host immunity and resist antibiotic treatments through various mechanisms that are difficult to evaluate in a living host. Pseudomonas aeruginosa is a main cause of chronic infections in patients with cystic fibrosis (CF) and wounds. Here, by immersing wounded zebrafish embryos in a suspension of P. aeruginosa isolates from CF patients, we established a model of persistent infection that mimics a murine chronic skin infection model. Live and electron microscopy revealed persisting aggregated P. aeruginosa inside zebrafish cells, including macrophages, at unprecedented resolution. Persistent P. aeruginosa exhibited adaptive resistance to several antibiotics, host cell permeable drugs being the most efficient. Moreover, persistent bacteria could be partly re-sensitized to antibiotics upon addition of anti-biofilm molecules that dispersed the bacterial aggregates in vivo. Collectively, this study demonstrates that an intracellular location protects persistent P. aeruginosa in vivo in wounded zebrafish embryos from host innate immunity and antibiotics, and provides new insights into efficient treatments against chronic infections.
Collapse
Affiliation(s)
- Stéphane Pont
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Flore Nilly
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Anne Bonhoure
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Morgan A. Alford
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Mélissande Louis
- CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Pauline Nogaret
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Manjeet Bains
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Olivier Lesouhaitier
- CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Robert E. W. Hancock
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Patrick Plésiat
- UMR6249 CNRS Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| |
Collapse
|
2
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
McCoy R, Wang K, Treiber J, Fu Y, Malliaras GG, Salleo A, Owens RM. Mucus-on-a-chip: investigating the barrier properties of mucus with organic bioelectronics. J Mater Chem B 2025; 13:577-587. [PMID: 39575664 DOI: 10.1039/d4tb01351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Gastrointestinal (GI) mucus is a biologically complex hydrogel that acts as a partially permeable barrier between the contents of the GI tract and the mucosal epithelial lining. Its structural integrity is essential for the lubrication of the tract thereby aiding smooth transit of contents, and the protection of the epithelium from pathogens that seek to colonise and invade. Understanding its physical response to drugs and the microbiome is essential for treating many gastrointestinal infectious diseases. Given this, a static in vitro model of a GI mucus-on-a-chip has been developed with integrated electronics to monitor the barrier properties of mucus hydrogels. Its application for investigating the effect of drugs and biofilm formation on the mucus structure is validated using rheological techniques, confocal microscopy and electrochemical impedance spectroscopy (EIS).
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Kaixin Wang
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Jeremy Treiber
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Ying Fu
- Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XQ, Glasgow, UK
| | - George G Malliaras
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| |
Collapse
|
4
|
Geremia N, Giovagnorio F, Colpani A, De Vito A, Botan A, Stroffolini G, Toc DA, Zerbato V, Principe L, Madeddu G, Luzzati R, Parisi SG, Di Bella S. Fluoroquinolones and Biofilm: A Narrative Review. Pharmaceuticals (Basel) 2024; 17:1673. [PMID: 39770514 PMCID: PMC11679785 DOI: 10.3390/ph17121673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Biofilm-associated infections frequently span multiple body sites and represent a significant clinical challenge, often requiring a multidisciplinary approach involving surgery and antimicrobial therapy. These infections are commonly healthcare-associated and frequently related to internal or external medical devices. The formation of biofilms complicates treatment, as they create environments that are difficult for most antimicrobial agents to penetrate. Fluoroquinolones play a critical role in the eradication of biofilm-related infections. Numerous studies have investigated the synergistic potential of combining fluoroquinolones with other chemical agents to augment their efficacy while minimizing potential toxicity. Comparative research suggests that the antibiofilm activity of fluoroquinolones is superior to that of beta-lactams and glycopeptides. However, their activity remains less effective than that of minocycline and fosfomycin. Noteworthy combinations include fluoroquinolones with fosfomycin and aminoglycosides for enhanced activity against Gram-negative organisms and fluoroquinolones with minocycline and rifampin for more effective treatment of Gram-positive infections. Despite the limitations of fluoroquinolones due to the intrinsic characteristics of this antibiotic, they remain fundamental in this setting thanks to their bioavailability and synergisms with other drugs. Methods: A comprehensive literature search was conducted using online databases (PubMed/MEDLINE/Google Scholar) and books written by experts in microbiology and infectious diseases to identify relevant studies on fluoroquinolones and biofilm. Results: This review critically assesses the role of fluoroquinolones in managing biofilm-associated infections in various clinical settings while also exploring the potential benefits of combination therapy with these antibiotics. Conclusions: The literature predominantly consists of in vitro studies, with limited in vivo investigations. Although real world data are scarce, they are in accordance with fluoroquinolones' effectiveness in managing early biofilm-associated infections. Also, future perspectives of newer treatment options to be placed alongside fluoroquinolones are discussed. This review underscores the role of fluoroquinolones in the setting of biofilm-associated infections, providing a comprehensive guide for physicians regarding the best use of this class of antibiotics while highlighting the existing critical issues.
Collapse
Affiliation(s)
- Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale “dell’Angelo”, 30174 Venice, Italy
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | - Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (G.M.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (G.M.)
| | - Alexandru Botan
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Giacomo Stroffolini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, 37024 Verona, Italy;
| | - Dan-Alexandru Toc
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy;
| | - Luigi Principe
- Clinical Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89128 Reggio di Calabria, Italy;
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (G.M.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34129 Trieste, Italy; (R.L.); (S.D.B.)
| | | | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34129 Trieste, Italy; (R.L.); (S.D.B.)
| |
Collapse
|
5
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, DeWolf S, Brand M, Rosas V, Lorenzi H, Wannemuehler M, Phillips G, Hinton D. A single rare σ70 variant establishes a unique gene expression pattern in the E. coli pathobiont LF82. Nucleic Acids Res 2024; 52:11552-11570. [PMID: 39258538 PMCID: PMC11514462 DOI: 10.1093/nar/gkae773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
LF82, an adherent-invasive Escherichia coli (AIEC) pathobiont, is associated with Crohn's disease, an inflammatory bowel disease of unknown etiology. Although AIEC phenotypes differ from those of 'commensal' or pathogenic E. coli, work has failed to identify genetic features accounting for these differences. We have investigated a natural, but rare, single nucleotide polymorphism (SNP) in LF82 present within the highly conserved rpoD gene, encoding σ70 [primary sigma factor, RNA polymerase (RNAP)]. We demonstrate that σ70 D445V results in transcriptomic and phenotypic changes consistent with LF82 phenotypes, including increased antibiotic resistance and biofilm formation and increased capacity for methionine biosynthesis. RNA-seq analyses comparing σ70 V445 versus σ70 D445 identified 24 genes upregulated by σ70 V445 in both LF82 and the laboratory E. coli K-12 strain MG1655. Using in vitro transcription, we demonstrate that σ70 D445V directly increases transcription from promoters for several of the up-regulated genes and that the presence of a 16 bp spacer and -14 G:C is associated with this increase. The position of D445V within RNAP suggests that it could affect RNAP/spacer interaction. Our work represents the first identification of a distinguishing SNP for this pathobiont and suggests an underrecognized mechanism by which pathobionts and strain variants can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Sarah DeWolf
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Hernan Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| |
Collapse
|
6
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
El-Sayed A, Kapila D, Taha RSI, El-Sayed S, Mahen MRA, Taha R, Alrubaiy L. The Role of the Gut Microbiome in Inflammatory Bowel Disease: The Middle East Perspective. J Pers Med 2024; 14:652. [PMID: 38929872 PMCID: PMC11204866 DOI: 10.3390/jpm14060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiome is of paramount importance in preserving internal balance in the gastrointestinal tract; therefore, disruptions in its regulation have been linked to the development of inflammatory bowel disease (IBD). This article explores the intricate details of the gastrointestinal microbiome as it pertains to inflammatory bowel disease (IBD), with an emphasis on the Middle East. The study reviews the typical gut microbiome, modifications in inflammatory bowel disease (IBD), determinants impacting the gut microbiome of the Middle East, and prospective therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Diya Kapila
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Rama Sami Issa Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | | | - Mohd Rafiw Ahmed Mahen
- Department of Medicine, King’s College Hospital London, Dubai P.O. Box 340901, United Arab Emirates;
| | - Roa’a Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | - Laith Alrubaiy
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
8
|
Bustamante P, Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms 2024; 12:1158. [PMID: 38930540 PMCID: PMC11205521 DOI: 10.3390/microorganisms12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pathobionts have been implicated in various chronic diseases, including Crohn's disease (CD), a multifactorial chronic inflammatory condition that primarily affects the gastrointestinal tract, causing inflammation and damage to the digestive system. While the exact cause of CD remains unclear, adherent-invasive Escherichia coli (AIEC) strains have emerged as key contributors to its pathogenesis. AIEC are characterized by their ability to adhere to and invade intestinal epithelial cells and survive and replicate inside macrophages. However, the mechanisms underlying the virulence and persistence of AIEC within their host remain the subject of intensive research. Toxin-antitoxin systems (TAs) play a potential role in AIEC pathogenesis and may be therapeutic targets. These systems generally consist of two components: a toxin harmful to the cell and an antitoxin that neutralizes the toxin's effects. They contribute to bacterial survival in adverse conditions and regulate bacterial growth and behavior, affecting various cellular processes in bacterial pathogens. This review focuses on the current information available to determine the roles of TAs in the pathogenicity of AIEC. Their contribution to the AIEC stress response, biofilm formation, phage inhibition, the maintenance of mobile genetic elements, and host lifestyles is discussed.
Collapse
Affiliation(s)
- Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - María Núria Ramos-Corominas
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| | - Margarita Martinez-Medina
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| |
Collapse
|
9
|
Yao T, Liu X, Li D, Huang Y, Yang W, Liu R, Wang Q, Li X, Zhou J, Jin C, Liu Y, Yang B, Pang Y. Two-component system RstAB promotes the pathogenicity of adherent-invasive Escherichia coli in response to acidic conditions within macrophages. Gut Microbes 2024; 16:2356642. [PMID: 38769708 PMCID: PMC11135836 DOI: 10.1080/19490976.2024.2356642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.
Collapse
Affiliation(s)
- Ting Yao
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Xingmei Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Dan Li
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Huang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Wen Yang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Ruiying Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Qian Wang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Xueping Li
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Jiarui Zhou
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Chen Jin
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yutao Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Bin Yang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Pang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Paris T, Kiss A, Signor L, Lutfalla G, Blaise M, Boeri Erba E, Chaloin L, Yatime L. The IbeA protein from adherent invasive Escherichia coli is a flavoprotein sharing structural homology with FAD-dependent oxidoreductases. FEBS J 2024; 291:177-203. [PMID: 37786987 DOI: 10.1111/febs.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Invasion of brain endothelium protein A (IbeA) is a virulence factor specific to pathogenic Escherichia coli. Originally identified in the K1 strain causing neonatal meningitis, it was more recently found in avian pathogenic Escherichia coli (APEC) and adherent invasive Escherichia coli (AIEC). In these bacteria, IbeA facilitates host cell invasion and intracellular survival, in particular, under harsh conditions like oxidative stress. Furthermore, IbeA from AIEC contributes to intramacrophage survival and replication, thus enhancing the inflammatory response within the intestine. Therefore, this factor is a promising drug target for anti-AIEC strategies in the context of Crohn's disease. Despite such an important role, the biological function of IbeA remains largely unknown. In particular, its exact nature and cellular localization, i.e., membrane-bound invasin versus cytosolic factor, are still of debate. Here, we developed an efficient protocol for recombinant expression of IbeA under native conditions and demonstrated that IbeA from AIEC is a soluble, homodimeric flavoprotein. Using mass spectrometry and tryptophan fluorescence measurements, we further showed that IbeA preferentially binds flavin adenine dinucleotide (FAD), with an affinity in the one-hundred nanomolar range and optimal binding under reducing conditions. 3D-modeling with AlphaFold revealed that IbeA shares strong structural homology with FAD-dependent oxidoreductases. Finally, we used ligand docking, mutational analyses, and molecular dynamics simulations to identify the FAD binding pocket within IbeA and characterize possible conformational changes occurring upon ligand binding. Overall, we suggest that the role of IbeA in the survival of AIEC within host cells, notably macrophages, is linked to modulation of redox processes.
Collapse
Affiliation(s)
- Théo Paris
- LPHI, Univ. Montpellier, CNRS, INSERM, France
| | - Agneta Kiss
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | | | | | | | | |
Collapse
|
11
|
Iaquinto G, Aufiero VR, Mazzarella G, Lucariello A, Panico L, Melina R, Iaquinto S, De Luca A, Sellitto C. Pathogens in Crohn's Disease: The Role of Adherent Invasive Escherichia coli. Crit Rev Eukaryot Gene Expr 2024; 34:83-99. [PMID: 38305291 DOI: 10.1615/critreveukaryotgeneexpr.2023050088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In Crohn's disease (CD), gut dysbiosis is marked by the prevalence of pathogenic bacterial species. Although several microbes have been reported as risk factors or causative agents of CD, it is not yet clear which is the real trigger of the disease. Thirty years ago, a new pathovar of Escherichia coli strain was isolated in the ileal mucosa of CD patients. This strain, called adherent invasive E. coli (AIEC), for its ability to invade the intestinal mucosa, could represent the causative agent of the disease. Several authors studied the mechanisms by which the AIEC penetrate and replicate within macrophages, and release inflammatory cytokines sustaining inflammation. In this review we will discuss about the role of AIEC in the pathogenesis of CD, the virulence factors mediating adhesion and invasion of AIEC in mucosal tissue, the environmental conditions improving AIEC survival and replication within macrophages. Finally, we will also give an overview of the new strategies developed to limit AIEC overgrowth.
Collapse
Affiliation(s)
- Gaetano Iaquinto
- Gastroenterology Division, S. Rita Hospital, Atripalda, Avellino, Italy
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope," 80100, Naples, Italy
| | - Luigi Panico
- Pathological Anatomy and Histology Unit, Monaldi Hospital, Napoli, Italy
| | - Raffaele Melina
- Department of Gastroenterology, San G. Moscati Hospital, Avellino, Italy
| | | | - Antonio De Luca
- Department of Mental Health and Physics, Preventive Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | |
Collapse
|
12
|
Leccese G, Chiara M, Dusetti I, Noviello D, Billard E, Bibi A, Conte G, Consolandi C, Vecchi M, Conte MP, Barnich N, Caprioli F, Facciotti F, Paroni M. AIEC-dependent pathogenic Th17 cell transdifferentiation in Crohn's disease is suppressed by rfaP and ybaT deletion. Gut Microbes 2024; 16:2380064. [PMID: 39069911 PMCID: PMC11290758 DOI: 10.1080/19490976.2024.2380064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Mucosal enrichment of the Adherent-Invasive E. coli (AIEC) pathotype and the expansion of pathogenic IFNγ-producing Th17 (pTh17) cells have been linked to Crohn's Disease (CD) pathogenesis. However, the molecular pathways underlying the AIEC-dependent pTh17 cell transdifferentiation in CD patients remain elusive. To this aim, we created and functionally screened a transposon AIEC mutant library of 10.058 mutants to identify the virulence determinants directly implicated in triggering IL-23 production and pTh17 cell generation. pTh17 cell transdifferentiation was assessed in functional assays by co-culturing AIEC-infected human dendritic cells (DCs) with autologous conventional Th17 (cTh17) cells isolated from blood of Healthy Donors (HD) or CD patients. AIEC triggered IL-23 hypersecretion and transdifferentiation of cTh17 into pTh17 cells selectively through the interaction with CD-derived DCs. Moreover, the chronic release of IL-23 by AIEC-colonized DCs required a continuous IL-23 neutralization to significantly reduce the AIEC-dependent pTh17 cell differentiation. The multi-step screenings of the AIEC mutant's library revealed that deletion of ybaT or rfaP efficiently hinder the IL-23 hypersecretion and hampered the AIEC-dependent skewing of protective cTh17 into pathogenic IFNγ-producing pTh17 cells. Overall, our findings indicate that ybaT (inner membrane transport protein) and rfaP (LPS-core heptose kinase) represent novel and attractive candidate targets to prevent chronic intestinal inflammation in CD.
Collapse
Affiliation(s)
- G. Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - M. Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - I. Dusetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - D. Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - E. Billard
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - A. Bibi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - G. Conte
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - C. Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - M. Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - MP Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - N. Barnich
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - F. Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - F. Facciotti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - M. Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Zangara MT, Darwish L, Coombes BK. Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. EcoSal Plus 2023; 11:eesp00182022. [PMID: 37220071 PMCID: PMC10729932 DOI: 10.1128/ecosalplus.esp-0018-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 01/28/2024]
Abstract
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lena Darwish
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Yao T, Huang Y, Huai Z, Liu X, Liu X, Liu Y, Sun H, Pang Y. Response mechanisms to acid stress promote LF82 replication in macrophages. Front Cell Infect Microbiol 2023; 13:1255083. [PMID: 37881369 PMCID: PMC10595154 DOI: 10.3389/fcimb.2023.1255083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Background Adherent-invasive E. coli (AIEC) LF82 is capable of adhering to and invading intestinal epithelial cells, as well as replicating within macrophages without inducing host cell death. Methods We compared the transcriptomics of LF82 at pH=7.5 and pH=5.8 by RNA-sequencing, and qRT-PCR verified differentially expressed genes (DEGs). The deletion mutants of DEGs in the treatment group (pH=5.8) compared to the control group (pH=7.5) were constructed by λ recombinant. The replication differences between the mutants and WT infected Raw 264.7 at 24 h.p.i were analyzed by combining LB solid plate count and confocal observation. NH4Cl and chloroquine diphosphate (CQ) were used for acid neutralization to study the effect of pH on the replication of LF82 in macrophages. Na2NO3 was added to RPMI 1640 to study the effect of nitrate on the replication of LF82 in macrophages. 0.3% solid LB was used for flagellar motility assay and Hela was used to study flagellar gene deletion mutants and WT adhesion and invasion ability. Results In this study, we found that infection with LF82 results in acidification of macrophages. Subsequent experiments demonstrated that an intracellular acidic environment is necessary for LF82 replication. Transcriptome and phenotypic analysis showed that high expression of acid shock genes and acid fitness genes promotes LF82 replication in macrophages. Further, we found that the replication of LF82 in macrophages was increased under nitrate treatment, and nitrogen metabolism genes of LF82 were upregulated in acid treatment. The replication in macrophages of ΔnarK, ΔnarXL, ΔnarP, and Δhmp were decreased. In addition, we found that the expression of flagellar genes was downregulated in acidic pH and after LF82 invading macrophages. Motility assay shows that the movement of LF82 on an acidic semisolid agar plate was limited. Further results showed that ΔfliC and ΔfliD decreased in motility, adhesion ability, and invasion of host cells, but no significant effect on replication in macrophages was observed. Conclusion In this study, we simulated the acidic environment in macrophages, combined with transcriptome technology, and explained from the genetic level that LF82 promotes replication by activating its acid shock and fitness system, enhancing nitrate utilization, and inhibiting flagellar function.
Collapse
Affiliation(s)
- Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Zimeng Huai
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaowen Liu
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| |
Collapse
|
15
|
Gowen R, Gamal A, Di Martino L, McCormick TS, Ghannoum MA. Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology 2023; 164:828-840. [PMID: 36702360 PMCID: PMC10152883 DOI: 10.1053/j.gastro.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
The central role of the gut microbiota in the regulation of health and disease has been convincingly demonstrated. Polymicrobial interkingdom interactions between bacterial (the bacteriome) and fungal (the mycobiome) communities of the gut have become a prominent focus for development of potential therapeutic approaches. In addition to polymicrobial interactions, the complex gut ecosystem also mediates interactions between the host and the microbiota. These interactions are complex and bidirectional; microbiota composition can be influenced by host immune response, disease-specific therapeutics, antimicrobial drugs, and overall ecosystems. However, the gut microbiota also influences host immune response to a drug or therapy by potentially transforming the drug's structure and altering bioavailability, activity, or toxicity. This is especially true in cases where the gut microbiota has produced a biofilm. The negative ramifications of biofilm formation include alteration of gut permeability, enhanced antimicrobial resistance, and alteration of host immune response effectiveness. Natural modulation of the gut microbiota, using probiotic and prebiotic approaches, may also be used to affect the host microbiome, a type of "natural" modulation of the host microbiota composition. In this review, we discuss potential bidirectional interactions between microbes and host, and we describe the changes in gut microbiota induced by probiotic and prebiotic approaches as well as their potential clinical consequences, including biofilm formation. We outline a systematic approach to designing probiotics capable of altering the host microbiota in disease states, using Crohn's disease as a model chronic disease. Understanding how the effective changes in the microbiome may enhance treatment efficacy may unlock the possibility of modulating the gut microbiome to improve treatment using a natural approach.
Collapse
Affiliation(s)
- Rachael Gowen
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Luca Di Martino
- University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Digestive Health Research Institute, Case Western Reserve University, Cleveland Ohio
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
16
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
17
|
Misson P, Bruder E, Cornuault JK, De Paepe M, Nicolas P, Demarre G, Lakisic G, Petit MA, Espeli O, Lecointe F. Phage production is blocked in the adherent-invasive Escherichia coli LF82 upon macrophage infection. PLoS Pathog 2023; 19:e1011127. [PMID: 36730457 PMCID: PMC9928086 DOI: 10.1371/journal.ppat.1011127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/14/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are frequently recovered from stools of patients with dysbiotic microbiota. They have remarkable properties of adherence to the intestinal epithelium, and survive better than other E. coli in macrophages. The best studied of these AIEC is probably strain LF82, which was isolated from a Crohn's disease patient. This strain contains five complete prophages, which have not been studied until now. We undertook their analysis, both in vitro and inside macrophages, and show that all of them form virions. The Gally prophage is by far the most active, generating spontaneously over 108 viral particles per mL of culture supernatants in vitro, more than 100-fold higher than the other phages. Gally is also over-induced after a genotoxic stress generated by ciprofloxacin and trimethoprim. However, upon macrophage infection, a genotoxic environment, this over-induction is not observed. Analysis of the transcriptome and key steps of its lytic cycle in macrophages suggests that the excision of the Gally prophage continues to be repressed in macrophages. We conclude that strain LF82 has evolved an efficient way to block the lytic cycle of its most active prophage upon macrophage infection, which may participate to its good survival in macrophages.
Collapse
Affiliation(s)
- Pauline Misson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Bruder
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Jeffrey K. Cornuault
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marianne De Paepe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Gaëlle Demarre
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Goran Lakisic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - François Lecointe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
18
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
19
|
Sanmukh SG, Admella J, Moya-Andérico L, Fehér T, Arévalo-Jaimes BV, Blanco-Cabra N, Torrents E. Accessing the In Vivo Efficiency of Clinically Isolated Phages against Uropathogenic and Invasive Biofilm-Forming Escherichia coli Strains for Phage Therapy. Cells 2023; 12:cells12030344. [PMID: 36766686 PMCID: PMC9913540 DOI: 10.3390/cells12030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli is one of the most common members of the intestinal microbiota. Many of its strains are associated with various inflammatory infections, including urinary or gut infections, especially when displaying antibiotic resistance or in patients with suppressed immune systems. According to recent reports, the biofilm-forming potential of E. coli is a crucial factor for its increased resistance against antibiotics. To overcome the limitations of using antibiotics against resistant E. coli strains, the world is turning once more towards bacteriophage therapy, which is becoming a promising candidate amongst the current personalized approaches to target different bacterial infections. Although matured and persistent biofilms pose a serious challenge to phage therapy, they can still become an effective alternative to antibiotic treatment. Here, we assess the efficiency of clinically isolated phages in phage therapy against representative clinical uropathogenic and invasive biofilm-forming E. coli strains. Our results demonstrate that irrespective of host specificity, bacteriophages producing clear plaques with a high burst size, and exhibiting depolymerizing activity, are good candidates against biofilm-producing E. coli pathogens as verified from our in vitro and in vivo experiments using Galleria mellonella where survival was significantly increased for phage-therapy-treated larvae.
Collapse
Affiliation(s)
- Swapnil Ganesh Sanmukh
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
- Correspondence: or (S.G.S.); or (E.T.)
| | - Joana Admella
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Laura Moya-Andérico
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: or (S.G.S.); or (E.T.)
| |
Collapse
|
20
|
Camus A, Espinosa E, Zapater Baras P, Singh P, Quenech’Du N, Vickridge E, Modesti M, Barre FX, Espéli O. The SMC-like RecN protein is at the crossroads of several genotoxic stress responses in Escherichia coli. Front Microbiol 2023; 14:1146496. [PMID: 37168111 PMCID: PMC10165496 DOI: 10.3389/fmicb.2023.1146496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. Methods In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. Results We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Discussion Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
Collapse
Affiliation(s)
- Adrien Camus
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Elena Espinosa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | | - Parul Singh
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Nicole Quenech’Du
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Elise Vickridge
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR 7258, INSERM U1068, Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - François Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Olivier Espéli
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
- *Correspondence: Olivier Espéli,
| |
Collapse
|
21
|
Mansour S, Asrar T, Elhenawy W. The multifaceted virulence of adherent-invasive Escherichia coli. Gut Microbes 2023; 15:2172669. [PMID: 36740845 PMCID: PMC9904308 DOI: 10.1080/19490976.2023.2172669] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
The surge in inflammatory bowel diseases, like Crohn's disease (CD), is alarming. While the role of the gut microbiome in CD development is unresolved, the frequent isolation of adherent-invasive Escherichia coli (AIEC) strains from patient biopsies, together with their propensity to trigger gut inflammation, underpin the potential role of these bacteria as disease modifiers. In this review, we explore the spectrum of AIEC pathogenesis, including their metabolic versatility in the gut. We describe how AIEC strains hijack the host defense mechanisms to evade immune attrition and promote inflammation. Furthermore, we highlight the key traits that differentiate AIEC from commensal E. coli. Deciphering the main components of AIEC virulence is cardinal to the discovery of the next generation of antimicrobials that can selectively eradicate CD-associated bacteria.
Collapse
Affiliation(s)
- Sarah Mansour
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Tahreem Asrar
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Wael Elhenawy
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Canada
- Women and Children’s Health Research Institute, Edmonton, Alberta, Canada
- Antimicrobial Resistance, One Health Consortium - Edmonton, AB, Canada
| |
Collapse
|
22
|
Abstract
Enteric bacterial infections contribute substantially to global disease burden and mortality, particularly in the developing world. In vitro 2D monolayer cultures have provided critical insights into the fundamental virulence mechanisms of a multitude of pathogens, including Salmonella enterica serovars Typhimurium and Typhi, Vibrio cholerae, Shigella spp., Escherichia coli and Campylobacter jejuni, which have led to the identification of novel targets for antimicrobial therapy and vaccines. In recent years, the arsenal of experimental systems to study intestinal infections has been expanded by a multitude of more complex models, which have allowed to evaluate the effects of additional physiological and biological parameters on infectivity. Organoids recapitulate the cellular complexity of the human intestinal epithelium while 3D bioengineered scaffolds and microphysiological devices allow to emulate oxygen gradients, flow and peristalsis, as well as the formation and maintenance of stable and physiologically relevant microbial diversity. Additionally, advancements in ex vivo cultures and intravital imaging have opened new possibilities to study the effects of enteric pathogens on fluid secretion, barrier integrity and immune cell surveillance in the intact intestine. This review aims to present a balanced and updated overview of current intestinal in vitro and ex vivo methods for modeling of enteric bacterial infections. We conclude that the different paradigms are complements rather than replacements and their combined use promises to further our understanding of host-microbe interactions and their impacts on intestinal health.
Collapse
Affiliation(s)
- Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- CONTACT Ute Römling Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Volker M. Lauschke Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
23
|
Wang Y, Xu S, He Q, Sun K, Wang X, Zhang X, Li Y, Zeng J. Crosstalk between microbial biofilms in the gastrointestinal tract and chronic mucosa diseases. Front Microbiol 2023; 14:1151552. [PMID: 37125198 PMCID: PMC10133492 DOI: 10.3389/fmicb.2023.1151552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
The gastrointestinal (GI) tract is the largest reservoir of microbiota in the human body; however, it is still challenging to estimate the distribution and life patterns of microbes. Biofilm, as the predominant form in the microbial ecosystem, serves ideally to connect intestinal flora, molecules, and host mucosa cells. It gives bacteria the capacity to inhabit ecological niches, communicate with host cells, and withstand environmental stresses. This study intends to evaluate the connection between GI tract biofilms and chronic mucosa diseases such as chronic gastritis, inflammatory bowel disease, and colorectal cancer. In each disease, we summarize the representative biofilm makers including Helicobacter pylori, adherent-invasive Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. We address biofilm's role in causing inflammation and the pro-carcinogenic stage in addition to discussing the typical resistance, persistence, and recurrence mechanisms seen in vitro. Biofilms may serve as a new biomarker for endoscopic and pathologic detection of gastrointestinal disease and suppression, which may be a useful addition to the present therapy strategy.
Collapse
Affiliation(s)
- Yumeng Wang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shixi Xu
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kun Sun
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaorui Zhang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yuqing Li,
| | - Jumei Zeng
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jumei Zeng,
| |
Collapse
|
24
|
O'Connor G, Quintero MA, Deo SK, Abreu MT, Daunert S. Bacterial Quorum-Sensing Molecules in Serum: A Potential Tool for Crohn's Disease Management. Clin Transl Gastroenterol 2022; 13:e00547. [PMID: 36413804 PMCID: PMC9780115 DOI: 10.14309/ctg.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Crohn's disease (CD) is an idiopathic inflammatory condition of the gastrointestinal tract with the primary method of diagnosis and follow-up being colonoscopy. A disturbed host-microbiome interaction, including the presence of pathobionts, is implicated in initiation and perpetuation of inflammation. As such, we hypothesized that bacterial quorum-sensing (QS) molecules (QSMs), small molecules bacteria generate to regulate gene expression, would be elevated in patients with CD. We collected serum at the time of colonoscopy from patients with CD and healthy controls, determining through biosensors for QSMs that patients with CD had significantly elevated levels of QSMs in serum. Expansion of these studies may allow for QSM levels in serum to serve as a biomarker for intestinal inflammation in patients with CD.
Collapse
Affiliation(s)
- Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Maria A. Quintero
- Division of Gastroenterology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sapna K. Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
- University of Miami Clinical and Translational Science Institute, Miami, Florida, USA
| |
Collapse
|
25
|
Bruder E, Espéli O. Escherichia coli bacteria associated with Crohn's disease persist within phagolysosomes. Curr Opin Microbiol 2022; 70:102206. [PMID: 36182819 DOI: 10.1016/j.mib.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023]
Abstract
Crohn's disease (CD) is characterized by an imbalance of intestinal microbiota and a colonization of subepithelial tissues by pathogen and pathobiont bacteria. Adherent invasive Escherichia coli (AIEC) strains recovered from CD lesions survive and multiply within macrophages. Persistence is one of the mechanisms deployed by AIEC to tolerate macrophages' attack. The challenging intracellular environment induces a heterogeneity in AIEC LF82 phenotype, including the presence of nongrowing bacteria. This could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections. In this article, we review the conditions leading to AIEC persistence, the relevance of this state for bacterial survival and disease's etiology, and its implication for therapeutic strategies.
Collapse
Affiliation(s)
- Emma Bruder
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, University PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, University PSL, Paris, France.
| |
Collapse
|
26
|
Biofilms and Benign Colonic Diseases. Int J Mol Sci 2022; 23:ijms232214259. [PMID: 36430737 PMCID: PMC9698058 DOI: 10.3390/ijms232214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The colon has a very large surface area that is covered by a dense mucus layer. The biomass in the colon includes 500-1000 bacterial species at concentrations of ~1012 colony-forming units per gram of feces. The intestinal epithelial cells and the commensal bacteria in the colon have a symbiotic relationship that results in nutritional support for the epithelial cells by the bacteria and maintenance of the optimal commensal bacterial population by colonic host defenses. Bacteria can form biofilms in the colon, but the exact frequency is uncertain because routine methods to undertake colonoscopy (i.e., bowel preparation) may dislodge these biofilms. Bacteria in biofilms represent a complex community that includes living and dead bacteria and an extracellular matrix composed of polysaccharides, proteins, DNA, and exogenous debris in the colon. The formation of biofilms occurs in benign colonic diseases, such as inflammatory bowel disease and irritable bowel syndrome. The development of a biofilm might serve as a marker for ongoing colonic inflammation. Alternatively, the development of biofilms could contribute to the pathogenesis of these disorders by providing sanctuaries for pathogenic bacteria and reducing the commensal bacterial population. Therapeutic approaches to patients with benign colonic diseases could include the elimination of biofilms and restoration of normal commensal bacteria populations. However, these studies will be extremely difficult unless investigators can develop noninvasive methods for measuring and identifying biofilms. These methods that might include the measurement of quorum sensing molecules, measurement of bile acids, and identification of bacteria uniquely associated with biofilms in the colon.
Collapse
|
27
|
Zheng L, Duan SL, Dai YC, Wu SC. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases 2022; 10:11671-11689. [PMID: 36405271 PMCID: PMC9669839 DOI: 10.12998/wjcc.v10.i32.11671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota imbalances play an important role in inflammatory bowel disease (IBD), but no single pathogenic microorganism critical to IBD that is specific to the IBD terminal ileum mucosa or can invade intestinal epithelial cells has been found. Invasive Escherichia coli (E. coli) adhesion to macrophages is considered to be closely related to the pathogenesis of inflammatory bowel disease. Further study of the specific biological characteristics of adherent invasive E. coli (AIEC) may contribute to a further understanding of IBD pathogenesis. This review explores the relationship between AIEC and the intestinal immune system, discusses the prevalence and relevance of AIEC in Crohn's disease and ulcerative colitis patients, and describes the relationship between AIEC and the disease site, activity, and postoperative recurrence. Finally, we highlight potential therapeutic strategies to attenuate AIEC colonization in the intestinal mucosa, including the use of phage therapy, antibiotics, and anti-adhesion molecules. These strategies may open up new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, Gansu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
28
|
Lopez LR, Ahn JH, Alves T, Arthur JC. Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:934619. [PMID: 35959366 PMCID: PMC9362432 DOI: 10.3389/fcimb.2022.934619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a significant global health problem that involves chronic intestinal inflammation and can involve severe comorbidities, including intestinal fibrosis and inflammation-associated colorectal cancer (CRC). Disease-associated alterations to the intestinal microbiota often include fecal enrichment of Enterobacteriaceae, which are strongly implicated in IBD development. This dysbiosis of intestinal flora accompanies changes in microbial metabolites, shaping host:microbe interactions and disease risk. While there have been numerous studies linking specific bacterial taxa with IBD development, our understanding of microbial function in the context of IBD is limited. Several classes of microbial metabolites have been directly implicated in IBD disease progression, including bacterial siderophores and genotoxins. Yet, our microbiota still harbors thousands of uncharacterized microbial products. In-depth discovery and characterization of disease-associated microbial metabolites is necessary to target these products in IBD treatment strategies. Towards improving our understanding of microbiota metabolites in IBD, it is important to recognize how host relevant factors influence microbiota function. For example, changes in host inflammation status, metal availability, interbacterial community structure, and xenobiotics all play an important role in shaping gut microbial ecology. In this minireview, we outline how each of these factors influences gut microbial function, with a specific focus on IBD-associated Enterobacteriaceae metabolites. Importantly, we discuss how altering the intestinal microenvironment could improve the treatment of intestinal inflammation and associated disorders, like intestinal fibrosis and CRC.
Collapse
Affiliation(s)
- Lacey R. Lopez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Janelle C. Arthur,
| |
Collapse
|
29
|
Petit TJ, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol 2022; 30:736-748. [DOI: 10.1016/j.tim.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
|