1
|
Tsujii M, Kobayashi A, Kano A, Kera K, Takagi T, Nagata N, Kojima S, Hikosaka K, Oguchi R, Sonoike K, Azai C, Inagaki T, Ishimaru Y, Uozumi N. Na + -driven pH regulation by Na+/H+ antiporters promotes photosynthetic efficiency in cyanobacteria. PLANT PHYSIOLOGY 2024; 197:kiae562. [PMID: 39446395 DOI: 10.1093/plphys/kiae562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 12/25/2024]
Abstract
Photosynthetic organisms have developed mechanisms to regulate light reactions in response to varying light conditions. Photosynthetic electron transport leads to the formation of a ΔpH across the thylakoid membrane (TM), which is crucial for regulating electron transport. However, other pH modulators remain to be identified, particularly in cyanobacteria. In this study, we evaluated the potential involvement of six Na+/H+ antiporters (NhaS1 to NhaS6) in control of pH in the cyanobacterium Synechocystis sp. PCC 6803. Synechocystis showed a strong requirement for Na+ at high light intensities, with ΔnhaS1 and ΔnhaS2 strains unable to grow under high-light conditions. We analyzed Na+ efflux-driven H + -uptake activities of NhaS1 to NhaS6 in inverted membranes of Escherichia coli. Biological fractionation and immunoelectron microscopy revealed that NhaS1 localizes to both the plasma and TMs, while NhaS2 localizes to the plasma membrane (PM). Measurement of photosynthesis activity indicated that NhaS2 promotes ATP production and electron transport from PQ to P700. Measurements of pH outside of the cells and in the cytoplasm suggested that both NhaS1 and NhaS2 are involved in PM-mediated light-dependent H+ uptake and cytoplasmic acidification. NhaS1 and NhaS2 were also found to prevent photoinhibition under high-light treatment. These results indicate that H+ transport mediated by NhaS1 and NhaS2 plays a role in regulating intracellular pH and maintaining photosynthetic electron transport.
Collapse
Affiliation(s)
- Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Ayumu Kobayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Ayaka Kano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Seiji Kojima
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan
- Technology Division, Panasonic Holdings Corporation, Moriguchi 570-8501, Japan
| | - Kouki Hikosaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-6-07, Sendai 980-8578, Japan
| | - Riichi Oguchi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 2000, Kisaichi, Katano, Osaka, 576-0004, Japan
| | - Kintake Sonoike
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Chihiro Azai
- Faculty of Science and Engineering, Chuo University, 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomomi Inagaki
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Hugener J, Xu J, Wettstein R, Ioannidi L, Velikov D, Wollweber F, Henggeler A, Matos J, Pilhofer M. FilamentID reveals the composition and function of metabolic enzyme polymers during gametogenesis. Cell 2024; 187:3303-3318.e18. [PMID: 38906101 DOI: 10.1016/j.cell.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 06/23/2024]
Abstract
Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.
Collapse
Affiliation(s)
- Jannik Hugener
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Rahel Wettstein
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Lydia Ioannidi
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Daniel Velikov
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Florian Wollweber
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Adrian Henggeler
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Martínez-Andrade JM, Roberson RW, Riquelme M. A bird's-eye view of the endoplasmic reticulum in filamentous fungi. Microbiol Mol Biol Rev 2024; 88:e0002723. [PMID: 38372526 PMCID: PMC10966943 DOI: 10.1128/mmbr.00027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
SUMMARYThe endoplasmic reticulum (ER) is one of the most extensive organelles in eukaryotic cells. It performs crucial roles in protein and lipid synthesis and Ca2+ homeostasis. Most information on ER types, functions, organization, and domains comes from studies in uninucleate animal, plant, and yeast cells. In contrast, there is limited information on the multinucleate cells of filamentous fungi, i.e., hyphae. We provide an analytical review of existing literature to categorize different types of ER described in filamentous fungi while emphasizing the research techniques and markers used. Additionally, we identify the knowledge gaps that need to be resolved better to understand the structure-function correlation of ER in filamentous fungi. Finally, advanced technologies that can provide breakthroughs in understanding the ER in filamentous fungi are discussed.
Collapse
Affiliation(s)
- Juan M. Martínez-Andrade
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| |
Collapse
|
4
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
5
|
Uchiyama T, Saito S, Yamanashi T, Kato M, Takebayashi K, Hamamoto S, Tsujii M, Takagi T, Nagata N, Ikeda H, Kikunaga H, Suda T, Toyama S, Miwa M, Matsuyama S, Seo M, Horie T, Kuromori T, Yamagami M, Ishimaru Y, Uozumi N. The HKT1 Na + transporter protects plant fertility by decreasing Na + content in stamen filaments. SCIENCE ADVANCES 2023; 9:eadg5495. [PMID: 37267352 PMCID: PMC10413666 DOI: 10.1126/sciadv.adg5495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
Salinity stress can greatly reduce seed production because plants are especially sensitive to salt during their reproductive stage. Here, we show that the sodium ion transporter AtHKT1;1 is specifically expressed around the phloem and xylem of the stamen in Arabidopsis thaliana to prevent a marked decrease in seed production caused by salt stress. The stamens of AtHKT1;1 mutant under salt stress overaccumulate Na+, limiting their elongation and resulting in male sterility. Specifically restricting AtHKT1;1 expression to the phloem leads to a 1.5-fold increase in the seed yield upon sodium ion stress. Expanding phloem expression of AtHKT1;1 throughout the entire plant is a promising strategy for increasing plant productivity under salinity stress.
Collapse
Affiliation(s)
- Takeshi Uchiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Taro Yamanashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Megumi Kato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kosuke Takebayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Hayato Ikeda
- Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan
- Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan
| | - Hidetoshi Kikunaga
- Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan
| | - Toshimi Suda
- Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan
| | - Sho Toyama
- Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Misako Miwa
- Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Shigeo Matsuyama
- Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Takashi Kuromori
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | | | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
6
|
Bessho T, Takagi T, Igawa K, Sato K. Gelatin-based cell culture device for construction and X-ray irradiation of a three-dimensional oral cancer model. ANAL SCI 2023; 39:771-778. [PMID: 36848001 DOI: 10.1007/s44211-023-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
Bioassays using three-dimensional (3D) tissue models offer several advantages over 2D culture assays because they can reproduce the structure and function of native tissues. In this study, we used our newly designed gelatin device to generate a miniature 3D model of human oral squamous cell carcinoma with stroma and blood vessels. To enable air-liquid interface culture, we conceived a new device structure in which three wells were lined up and separated by a dividing thread; the wells could be connected by removing the dividing thread. Cells were seeded in the center well with the dividing thread to form a multilayer, followed by the supply of media from the side wells after thread removal. Human oral squamous cell carcinoma (HSC-4) cells, human umbilical vein endothelial cells (HUVECs), and normal human dermal fibroblasts (NHDFs) were successfully cocultured, resulting in structures that mimicked 3D-cancer tissues. This 3D-cancer model was subjected to an X-ray sensitivity assay, followed by the evaluation of DNA damage using confocal microscopy and section-scanning electron microscopy.
Collapse
Affiliation(s)
- Tomoka Bessho
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo, 112-8681, Japan.
| |
Collapse
|
7
|
Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals. Microorganisms 2023; 11:microorganisms11010125. [PMID: 36677416 PMCID: PMC9864768 DOI: 10.3390/microorganisms11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the long history of microorganism use, yeasts have been developed as hosts for producing biologically active compounds or for conventional fermentation. Since the introduction of genetic engineering, recombinant proteins have been designed and produced using yeast or bacterial cells. Yeasts have the unique property of expressing genes derived from both prokaryotes and eukaryotes. Saccharomyces cerevisiae is one of the well-studied yeasts in genetic engineering. Recently, molecular display technology, which involves a protein-producing system on the yeast cell surface, has been established. Using this technology, designed proteins can be displayed on the cell surface, and novel abilities are endowed to the host yeast strain. This review summarizes various molecular yeast display technologies and their principles and applications. Moreover, S. cerevisiae laboratory strains generated using molecular display technology for sustainable development are described. Each application of a molecular displayed yeast cell is also associated with the corresponding Sustainable Development Goals of the United Nations.
Collapse
|
8
|
Gunasekaran S, Miyagawa Y, Miyamoto K. Actin nucleoskeleton in embryonic development and cellular differentiation. Curr Opin Cell Biol 2022; 76:102100. [DOI: 10.1016/j.ceb.2022.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
|
9
|
Ma OX, Chong WG, Lee JKE, Cai S, Siebert CA, Howe A, Zhang P, Shi J, Surana U, Gan L. Cryo-ET detects bundled triple helices but not ladders in meiotic budding yeast. PLoS One 2022; 17:e0266035. [PMID: 35421110 PMCID: PMC9009673 DOI: 10.1371/journal.pone.0266035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/13/2022] [Indexed: 11/19/2022] Open
Abstract
In meiosis, cells undergo two sequential rounds of cell division, termed meiosis I and meiosis II. Textbook models of the meiosis I substage called pachytene show that nuclei have conspicuous 100-nm-wide, ladder-like synaptonemal complexes and ordered chromatin loops. It remains unknown if these cells have any other large, meiosis-related intranuclear structures. Here we present cryo-ET analysis of frozen-hydrated budding yeast cells before, during, and after pachytene. We found no cryo-ET densities that resemble dense ladder-like structures or ordered chromatin loops. Instead, we found large numbers of 12-nm-wide triple-helices that pack into ordered bundles. These structures, herein called meiotic triple helices (MTHs), are present in meiotic cells, but not in interphase cells. MTHs are enriched in the nucleus but not enriched in the cytoplasm. Bundles of MTHs form at the same timeframe as synaptonemal complexes (SCs) in wild-type cells and in mutant cells that are unable to form SCs. These results suggest that in yeast, SCs coexist with previously unreported large, ordered assemblies.
Collapse
Affiliation(s)
- Olivia X. Ma
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Wen Guan Chong
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Joy K. E. Lee
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - C. Alistair Siebert
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Andrew Howe
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Peijun Zhang
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
- Biotransformation Innovation Platform, A*STAR, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|