1
|
Panday SK, Shankar V, Lyman RA, Alexov E. Genetic Variants Linked to Opioid Addiction: A Genome-Wide Association Study. Int J Mol Sci 2024; 25:12516. [PMID: 39684228 DOI: 10.3390/ijms252312516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Opioid use disorder (OUD) affects millions of people worldwide. While it is known that OUD originates from many factors, including social and environmental factors, the role of genetic variants in developing the disease has also been reported. This study aims to investigate the genetic variants associated with the risk of developing OUD upon exposure. Twenty-three subjects who had previously been given opioid-based painkillers to undergo minor surgical treatment were recruited at Prisma Health Upstate clinic and elsewhere. Eleven were considered nonpersistent opioid users (controls), and 12 were persistent opioid users (cases) at the time of sample collection after an initial surgery. The subjects were asked to provide saliva samples, which were subjected to DNA sequencing at Clemson University Center for Human Genetics, and variant calling was performed. The genome-wide association studies (GWASs) for genes known to be associated with OUD resulted in 13 variants (intronic or SNV) with genome-wide significance (raw p-value < 0.01) and two missense variants, rs6265 (p.Val66Met in BNDF isoform a) and rs1799971 (p.Asn40Asp) in OPRM1, previously reported in the literature. Furthermore, extending the GWASs to find all genomic variants and filtering the variants to include only variants found in cases (persistent opioid users) but not in controls (nonpersistent opioid users) resulted in 11 new variants (p-value < 0.005). Considering that OUD is a complex disease and the effect might come from different variants in the same genes, we performed a co-occurrence analysis of variants on the genes. We identified eight additional genes that harbor multiple variants, including four genes: LRFN3, ZMIZ1, RYR3, and OR1L6, with three or more variants in the case subjects but not in the control individuals. The performed PPI network construction, along with functional enrichment, indicated that the variants occur in calcium signaling, circadian entrainment, morphine addiction, alcoholism, and opioid signaling pathways, which are closely related to OUD or addiction in general.
Collapse
Affiliation(s)
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Rachel Ann Lyman
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Dharmasri PA, DeMarco EM, Anderson MC, Levy AD, Blanpied TA. Loss of postsynaptic NMDARs drives nanoscale reorganization of Munc13-1 and PSD-95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574705. [PMID: 38260705 PMCID: PMC10802569 DOI: 10.1101/2024.01.12.574705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoscale protein organization within the active zone (AZ) and post-synaptic density (PSD) influences synaptic transmission. Nanoclusters of presynaptic Munc13-1 are associated with readily releasable pool size and neurotransmitter vesicle priming, while postsynaptic PSD-95 nanoclusters coordinate glutamate receptors across from release sites to control their opening probability. Nanocluster number, size, and protein density vary between synapse types and with development and plasticity, supporting a wide range of functional states at the synapse. Whether or how the receptors themselves control this critical architecture remains unclear. One prominent PSD molecular complex is the NMDA receptor (NMDAR). NMDARs coordinate several modes of signaling within synapses, giving them the potential to influence synaptic organization through direct protein interactions or through signaling. We found that loss of NMDARs results in larger synapses that contain smaller, denser, and more numerous PSD-95 nanoclusters. Intriguingly, NMDAR loss also generates retrograde reorganization of the active zone, resulting in denser, more numerous Munc13-1 nanoclusters, more of which are aligned with PSD-95 nanoclusters. Together, these changes to synaptic nanostructure predict stronger AMPA receptor-mediated transmission in the absence of NMDARs. Notably, while prolonged antagonism of NMDAR activity increases Munc13-1 density within nanoclusters, it does not fully recapitulate these trans-synaptic effects. Thus, our results confirm that NMDARs play an important role in maintaining pre- and postsynaptic nanostructure and suggest that both decreased NMDAR expression and suppressed NMDAR activity may exert distinct effects on synaptic function, yet through unique architectural mechanisms.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
- Current address: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Emily M. DeMarco
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Michael C. Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| |
Collapse
|
4
|
Gu YH, Wang J, Lu WC, Cheng Y, Tao R, Zhang SJ, Xu T, Zhai KW, Luo SX, Xin WJ. POU2F1/DNMT3a Pathway Participates in Neuropathic Pain by Hypermethylation-Mediated LRFN4 Downregulation Following Oxaliplatin Treatment. Neurochem Res 2023; 48:3652-3664. [PMID: 37592110 DOI: 10.1007/s11064-023-04011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Evidence demonstrates that DNA methylation is associated with the occurrence and development of various neurological diseases. However, the potential target genes undergoing DNA methylation, as well as their involvement in the chemotherapy drug oxaliplatin-induced neuropathic pain, are still unclear. Here, Lrfn4, which showed hypermethylation in the promoter regions, was screened from the SRA methylation database (PRJNA587622) following oxaliplatin treatment. MeDIP and qPCR assays identified that oxaliplatin treatment increased the methylation in Lrfn4 promoter region and decreased the expression of LRFN4 in the spinal dorsal horn. The assays with gain and loss of LRFN4 function demonstrated that LRFN4 downregulation in spinal dorsal horn contributed to the oxaliplatin-induced mechanical allodynia and cold hyperalgesia. Moreover, oxaliplatin treatment increased the DNA methyltransferases DNMT3a expression and the interaction between DNMT3a and Lrfn4 promoter, while inhibition of DNMT3a prevented the downregulation of LRFN4a induced by oxaliplatin. We also observed that the transcriptional factor POU2F1 can bind to the predicted sites in DNMT3a promoter region, oxaliplatin treatment upregulated the expression of transcriptional factor POU2F1 in dorsal horn neurons. Intrathecal injection of POU2F1 siRNA prevented the DNMT3a upregulation and the LRFN4 downregulation induced by oxaliplatin. Additionally, intrathecal injection of DNMT3a siRNA or POU2F1 siRNA alleviated the mechanical allodynia induced by oxaliplatin. These findings suggested that transcription factor POU2F1 upregulated the expression of DNMT3a, which subsequently decreased LRFN4 expression through hypermethylation modification in spinal dorsal horn, thereby mediating neuropathic pain following oxaliplatin treatment.
Collapse
Affiliation(s)
- Yan-Hui Gu
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Wang
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei-Cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Collaborative Innovation for Cancer Medicine, Sun Yat- sen University Cancer Center, Guangzhou, China
| | - Yong Cheng
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
| | - Rong Tao
- Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Shi-Jia Zhang
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ke-Wei Zhai
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
| | - Su-Xia Luo
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China.
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China.
- Zhongshan Medical School, Sun Yat-sen University, Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|