1
|
Liu X, Park H, Ackermann YS, Avérous L, Ballerstedt H, Besenmatter W, Blázquez B, Bornscheuer UT, Branson Y, Casey W, de Lorenzo V, Dong W, Floehr T, Godoy MS, Ji Y, Jupke A, Klankermayer J, León DS, Liu L, Liu X, Liu Y, Manoli MT, Martínez-García E, Narancic T, Nogales J, O'Connor K, Osterthun O, Perrin R, Prieto MA, Pollet E, Sarbu A, Schwaneberg U, Su H, Tang Z, Tiso T, Wang Z, Wei R, Welsing G, Wierckx N, Wolter B, Xiao G, Xing J, Zhao Y, Zhou J, Tan T, Blank LM, Jiang M, Chen GQ. Exploring biotechnology for plastic recycling, degradation and upcycling for a sustainable future. Biotechnol Adv 2025; 81:108544. [PMID: 40024585 DOI: 10.1016/j.biotechadv.2025.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The persistent demand for plastic commodities, inadequate recycling infrastructure, and pervasive environmental contamination due to plastic waste present a formidable global challenge. Recycling, degradation and upcycling are the three most important ways to solve the problem of plastic pollution. Sequential enzymatic and microbial degradation of mechanically and chemically pre-treated plastic waste can be orchestrated, followed by microbial conversion into value-added chemicals and polymers through mixed culture systems. Furthermore, plastics-degrading enzymes can be optimized through protein engineering to enhance their specific binding capacities, stability, and catalytic efficiency across a broad spectrum of polymer substrates under challenging high salinity and temperature conditions. Also, the production and formulation of enzyme mixtures can be fine-tuned to suit specific waste compositions, facilitating their effective deployment both in vitro, in vivo and in combination with chemical technologies. Here, we emphasized the comprehensive strategy leveraging microbial processes to transform mixed plastics of fossil-derived polymers such as PP, PE, PU, PET, and PS, most notably polyesters, in conjunction with potential biodegradable alternatives such as PLA and PHA. Any residual material resistant to enzymatic degradation can be reintroduced into the process loop following appropriate physicochemical treatment.
Collapse
Affiliation(s)
- Xu Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; PhaBuilder Biotechnology Co. Ltd, Shunyi District, Beijing 101309, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | | | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Blas Blázquez
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Yannick Branson
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - William Casey
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Víctor de Lorenzo
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tilman Floehr
- Everwave GmbH, Strüverweg 116, 52070 Aachen, Germany
| | - Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Yu Ji
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering, Aachen Process Technology (AVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - David San León
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Luo Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xianrui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yizhi Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Maria T Manoli
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Esteban Martínez-García
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Tanja Narancic
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Juan Nogales
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Kevin O'Connor
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ole Osterthun
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Rémi Perrin
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Alexandru Sarbu
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Ulrich Schwaneberg
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zequn Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Zishuai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ren Wei
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Gina Welsing
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Birger Wolter
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianmin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing 100190, PR China
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| |
Collapse
|
5
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|