1
|
Oh IT, Kim SC, Kim Y, Kim YH, Chae KS. Magnetic sense-dependent probabilistic decision-making in humans. Front Neurosci 2025; 19:1497021. [PMID: 40125477 PMCID: PMC11925921 DOI: 10.3389/fnins.2025.1497021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Even though it is not well characterized how much humans can sense the geomagnetic field (GMF), numerous magnetosensitive animals can detect GMF broadly as a sensory cue, when a spatial decision-making is needed for orientation or migration. In an article of recent series of studies, we showed that the empirical probabilities of stone selections in Go game were significantly different from the theoretical probability. In this study, we assessed the implication of the GMF in modulating subconscious non-spatial decision-making in human subjects and the underlying mechanism with exploiting the zero-sum binary stone selection of Go game as a proof-of-principle. In a laboratory setting, the experimental probability in a decision-making was significantly hampered by the cancelation of the ambient GMF. Moreover, the attenuation of decision-making was confirmed by a specific range of magnetic resonance radiofrequency. In numerous stone selection games among amateur Go players in the artificial magnetic field setting, the analyses of stone selection rate by trials and steps for decision-making pinpointed the subconscious stone selection as a primary modulating target in the binary decision-making. Our findings may provide unique insights into the impact of sensing GMF in probabilistic decision-making in which theoretical probability is manifested into empirical probability through a magnetic field resonance-dependent mechanism.
Collapse
Affiliation(s)
- In-Taek Oh
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soo-Chan Kim
- Department of Electrical and Electronic Engineering, Research Center for Applied Human Sciences, Hankyong National University, Anseong, Republic of Korea
| | - Yongkuk Kim
- Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Hwan Kim
- Neuroscience Program, School of Allied Health Sciences, Boise State University, Boise, ID, United States
| | - Kwon-Seok Chae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Tang Z, Wang X, Yang C, Chen Z, Zeng Z. A Bionic Localization Memristive Circuit Based on Spatial Cognitive Mechanisms of Hippocampus and Entorhinal Cortex. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:552-563. [PMID: 38805341 DOI: 10.1109/tbcas.2024.3350135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional models in X and Y directions. The head direction cell module utilizes memristors to integrate angular velocity and represents the real orientation of an agent. The grid cell module uses memristors to sense linear velocity and orientation signals, which are both self-motion cues, and encodes the position in space by firing in a periodic mode. The place cell module receives the grid cell module's output and fires in a specific position. The decoding module decodes the angle or place information and transfers the neuron state to a 'one-hot' code. This proposed circuit completes the localizing task in space and realizes in-memory computing due to the use of memristors, which can shorten the execution time. The functions mentioned above are implemented in LTSPICE. The simulation results show that the proposed circuit can realize path integration and localization. Moreover, it is shown that the proposed circuit has good robustness and low area overhead. This work provides a possible application idea in a prospective robot platform to help the robot localize and build maps.
Collapse
|
3
|
Li AY, Ladyka-Wojcik N, Qazilbash H, Golestani A, Walther DB, Martin CB, Barense MD. Experience transforms crossmodal object representations in the anterior temporal lobes. eLife 2024; 13:e83382. [PMID: 38647143 PMCID: PMC11081630 DOI: 10.7554/elife.83382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a 4-day paradigm, in which participants learned three-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased toward visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.
Collapse
Affiliation(s)
- Aedan Yue Li
- Department of Psychology, University of TorontoTorontoCanada
| | | | - Heba Qazilbash
- Department of Psychology, University of TorontoTorontoCanada
| | - Ali Golestani
- Department of Physics and Astronomy, University of CalgaryCalgaryCanada
| | - Dirk B Walther
- Department of Psychology, University of TorontoTorontoCanada
- Rotman Research Institute, Baycrest Health SciencesNorth YorkCanada
| | - Chris B Martin
- Department of Psychology, Florida State UniversityTallahasseeUnited States
| | - Morgan D Barense
- Department of Psychology, University of TorontoTorontoCanada
- Rotman Research Institute, Baycrest Health SciencesNorth YorkCanada
| |
Collapse
|
4
|
Viganò S, Bayramova R, Doeller CF, Bottini R. Mental search of concepts is supported by egocentric vector representations and restructured grid maps. Nat Commun 2023; 14:8132. [PMID: 38065931 PMCID: PMC10709434 DOI: 10.1038/s41467-023-43831-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The human hippocampal-entorhinal system is known to represent both spatial locations and abstract concepts in memory in the form of allocentric cognitive maps. Using fMRI, we show that the human parietal cortex evokes complementary egocentric representations in conceptual spaces during goal-directed mental search, akin to those observable during physical navigation to determine where a goal is located relative to oneself (e.g., to our left or to our right). Concurrently, the strength of the grid-like signal, a neural signature of allocentric cognitive maps in entorhinal, prefrontal, and parietal cortices, is modulated as a function of goal proximity in conceptual space. These brain mechanisms might support flexible and parallel readout of where target conceptual information is stored in memory, capitalizing on complementary reference frames.
Collapse
Affiliation(s)
- Simone Viganò
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | - Rena Bayramova
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
- Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany
| | - Roberto Bottini
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
5
|
Sixtus E, Krause F, Lindemann O, Fischer MH. A sensorimotor perspective on numerical cognition. Trends Cogn Sci 2023; 27:367-378. [PMID: 36764902 DOI: 10.1016/j.tics.2023.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Numbers are present in every part of modern society and the human capacity to use numbers is unparalleled in other species. Understanding the mental and neural representations supporting this capacity is of central interest to cognitive psychology, neuroscience, and education. Embodied numerical cognition theory suggests that beyond the seemingly abstract symbols used to refer to numbers, their underlying meaning is deeply grounded in sensorimotor experiences, and that our specific understanding of numerical information is shaped by actions related to our fingers, egocentric space, and experiences with magnitudes in everyday life. We propose a sensorimotor perspective on numerical cognition in which number comprehension and numerical proficiency emerge from grounding three distinct numerical core concepts: magnitude, ordinality, and cardinality.
Collapse
Affiliation(s)
- Elena Sixtus
- Empirical Childhood Research, University of Potsdam, Potsdam, Germany.
| | - Florian Krause
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Oliver Lindemann
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, The Netherlands
| | - Martin H Fischer
- Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 PMCID: PMC11709228 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|