1
|
Overduin M, Bhat R, Dieudonné T, Zhang P, Kervin TA. Deciphering the language of mingling lipids and proteins. Curr Opin Struct Biol 2025; 92:103061. [PMID: 40339327 DOI: 10.1016/j.sbi.2025.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025]
Abstract
Each cell possesses a genetic and a proteolipid code that together convey molecular information in a perpetual cycle. One element of this cycle is the recognition of lipids that work together to specify subcellular locations for biochemical activity. These "lipidons" are now being resolved in protein structures from eukaryotic plasma membranes, endosomes, mitochondria, prokaryotes, and viruses with technologies like in situ cryo-electron imaging and membrane-active polymers. This adds to an expanding catalogue of codified protein-lipid interactions that are recontextualizing cell biology and drug discovery.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton Canada; Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Rakesh Bhat
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton Canada
| | - Thibaud Dieudonné
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Peijun Zhang
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Troy A Kervin
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chien CT, Maduke M, Chiu W. Single-particle cryogenic electron microscopy structure determination for membrane proteins. Curr Opin Struct Biol 2025; 92:103047. [PMID: 40228430 DOI: 10.1016/j.sbi.2025.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Membrane proteins are crucial to many cellular functions but are notoriously difficult for structural studies due to their instability outside their natural environment and their amphipathic nature with dual hydrophobic and hydrophilic regions. Single-particle cryogenic electron microscopy (cryo-EM) has emerged as a transformative approach, providing near-atomic-resolution structures without the need for crystallization. This review discusses advancements in cryo-EM, emphasizing membrane sample preparation and data processing techniques. It explores innovations in capturing membrane protein structures within native environments, analyzing their dynamics, binding partner interactions, lipid associations, and responses to electrochemical gradients. These developments continue to enhance our understanding of these vital biomolecules, advancing the contributions of structural biology for basic and translational biomedicine.
Collapse
Affiliation(s)
- Chih-Ta Chien
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Wah Chiu
- Departments of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Cornut D, Soulié M, Guillet P, Kanayo Onyia K, Mahler F, Keller S, Moreno A, Durand G. Impact of Fluorination on Membrane-Protein Stabilization and Extraction by Lactobionamide Detergents. Chempluschem 2025; 90:e202400740. [PMID: 39812556 DOI: 10.1002/cplu.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/16/2025]
Abstract
We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series. While the detergent with the longest fluorinated chain exhibited poor water solubility, the other three derivatives were freely soluble. Dynamic light scattering (DLS) measurements indicated an increase in hydrodynamic diameter with chain length, from 5 nm to 17 nm for the soluble derivatives. We evaluated these detergents for extraction and stabilization of two model membrane proteins, the human adenosine A2A receptor (A2AR) and the Bacillus subtilis multidrug resistance ABC transporter BmrA. The perfluorohexyl derivative demonstrated strong solubilization capacity, while the perfluoro-pentyl derivative was more effective for stabilization. The lack of a clear correlation between fluoroalkyl chain length and solubilizing or stabilizing efficacy highlights the importance of screening diverse detergents for membrane-protein studies.
Collapse
Affiliation(s)
- Damien Cornut
- Equipe Chimie Bioorganique et Systèmes amphiphiles, Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Chem2staB, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
| | - Marine Soulié
- Equipe Chimie Bioorganique et Systèmes amphiphiles, Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Chem2staB, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bioorganiques, Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
| | - Pierre Guillet
- Equipe Chimie Bioorganique et Systèmes amphiphiles, Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Chem2staB, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bioorganiques, Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
| | - Kenechi Kanayo Onyia
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Alexis Moreno
- Chem2staB, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Eurofins CALIXAR, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Grégory Durand
- Equipe Chimie Bioorganique et Systèmes amphiphiles, Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Chem2staB, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
- Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bioorganiques, Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon cedex 9, France
| |
Collapse
|
4
|
Hardy BJ, Ford HC, Rudin M, Anderson JLR, Curnow P. Polymer nanodiscs support the functional extraction of an artificial transmembrane cytochrome. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184392. [PMID: 39414100 DOI: 10.1016/j.bbamem.2024.184392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Polymer nanodiscs are an attractive alternative to surfactants for studying integral membrane proteins within their native lipid environment. Here, we investigate the use of such polymers to isolate a computationally-designed de novo membrane cytochrome named CytbX. We show that the block copolymers known as CyclAPols can efficiently extract CytbX directly from biomembranes and are compatible with the downstream purification and biophysical characterisation of this artificial protein. CyclAPol-solubilised CytbX is well-folded and highly robust with properties that are essentially identical to those observed for the same protein in a detergent micelle. However, electron transfer to CytbX from a diffusive flavoprotein is substantially faster in micelles than in the nanodisc system. Our results confirm that polymer nanodiscs will be a useful tool for the ongoing study and application of de novo membrane proteins.
Collapse
Affiliation(s)
| | - Holly C Ford
- School of Biochemistry, University of Bristol, UK
| | - May Rudin
- School of Biochemistry, University of Bristol, UK
| | | | - Paul Curnow
- School of Biochemistry, University of Bristol, UK.
| |
Collapse
|
5
|
de Jesus Sousa C, Batista JF, Brito AKF, Barros NCB, de Oliveira SSC, Branquinha MH, do Socorro Pires E Cruz M, de Mendonca IL, Dos Santos ALS. Feline Leishmaniasis: Evidence-based Treatments - Challenges to be Solved. Curr Med Chem 2025; 32:2235-2256. [PMID: 38808714 DOI: 10.2174/0109298673305978240527102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoa parasites from the Leishmania genus. Vertebrate hosts acquire the infection through the bite of a female sandfly, initiating a complex parasite development cycle. Contrary to previous beliefs regarding cats' resistance, these animals have recently been identified as potential reservoirs for leishmaniasis. Clinical symptoms in cats can manifest in diverse forms, including cutaneous, mucocutaneous, and visceral manifestations. The diagnosis of feline leishmaniasis is complicated by nonspecific symptoms and the relatively lower specificity of serological tests. The recommended treatment for feline leishmaniasis involves the administration of medications; however, success varies in each cat. This review aims to present cases of feline leishmaniasis, highlighting clinical symptoms, diagnostic methods, therapy schedules, and outcomes. Among the 24 cases documented in the available literature, 12 achieved successful treatment without relapses, resulting in a reduced parasite load and improved symptoms. Three cases responded well but presented persistent sequelae. Two feline leishmaniasis cases initially had treatment success but later experienced recurrences. Finally, no response was observed in seven cases, leading to the euthanasia of cats due to ineffectiveness or irregularities along the therapy. Conventional treatments, despite potential hepatotoxicity and nephrotoxicity, exhibit a high efficacy in reducing parasitic load, thereby improving clinical symptoms and increasing the life expectancy of affected cats. Nevertheless, consistent adherence is crucial, as interruptions may render the therapy ineffective and contribute to parasite resistance. Therefore, addressing the challenges associated with feline leishmaniasis treatment necessitates the development of new strategies to ensure a more effective and sustained approach.
Collapse
Affiliation(s)
- Caroline de Jesus Sousa
- Programa de Pós-Graduação Tecnologias Aplicadas a Animais de Interesse Regional (PPGTAIR), Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Departamento de Clínica e Cirurgia Veterinária, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Departamento de Morfofisiologia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
| | - Joilson Ferreira Batista
- Departamento de Clínica e Cirurgia Veterinária, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Secretaria do Trabalho e Desenvolvimento Econômico, Sobral, Ceará, Brasil
| | - Amanda Karoliny Figueredo Brito
- Programa de Pós-Graduação Tecnologias Aplicadas a Animais de Interesse Regional (PPGTAIR), Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Departamento de Morfofisiologia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
| | - Nathalia Castelo Branco Barros
- Programa de Pós-Graduação Tecnologias Aplicadas a Animais de Interesse Regional (PPGTAIR), Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Departamento de Morfofisiologia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
| | | | - Marta Helena Branquinha
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Maria do Socorro Pires E Cruz
- Programa de Pós-Graduação Tecnologias Aplicadas a Animais de Interesse Regional (PPGTAIR), Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Departamento de Morfofisiologia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
| | - Ivete Lopes de Mendonca
- Programa de Pós-Graduação Tecnologias Aplicadas a Animais de Interesse Regional (PPGTAIR), Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Departamento de Clínica e Cirurgia Veterinária, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
| | - Andre Luis Souza Dos Santos
- Programa de Pós-Graduação Tecnologias Aplicadas a Animais de Interesse Regional (PPGTAIR), Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| |
Collapse
|
6
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
7
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Moller E, Britt M, Zhou F, Yang H, Anshkin A, Ernst R, Sukharev S, Matthies D. Polymer-extracted structure of the mechanosensitive channel MscS reveals the role of protein-lipid interactions in the gating cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576751. [PMID: 38328078 PMCID: PMC10849555 DOI: 10.1101/2024.01.22.576751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane protein structure determination is not only technically challenging but is further complicated by the removal or displacement of lipids, which can result in non-native conformations or a strong preference for certain states at the exclusion of others. This is especially applicable to mechanosensitive channels (MSC's) that evolved to gate in response to subtle changes in membrane tension transmitted through the lipid bilayer. E. coli MscS, a model bacterial system, is an ancestral member of the large family of MSCs found across all phyla of walled organisms. As a tension sensor, MscS is very sensitive and highly adaptive; it readily opens under super-threshold tension and closes under no tension, but under lower tensions, it slowly inactivates and can only recover when tension is released. However, existing cryo-EM structures do not explain the entire functional gating cycle of open, closed, and inactivated states. A central question in the field has been the assignment of the frequently observed non-conductive conformation to either a closed or inactivated state. Here, we present a 3 Å MscS structure in native nanodiscs obtained with Glyco-DIBMA polymer extraction, eliminating the lipid removal step that is common to all previous structures. Besides the protein in the non-conductive conformation, we observe well-resolved densities of four endogenous phospholipid molecules intercalating between the lipid-facing and pore-lining helices in preferred orientations. Mutations of positively charged residues coordinating these lipids inhibit MscS inactivation, whereas removal of a negative charge near the lipid-filled crevice increases inactivation. The functional data allows us to assign this class of structures to the inactivated state. This structure reveals preserved lipids in their native locations, and the functional effects of their destabilization illustrate a novel inactivation mechanism based on an uncoupling of the peripheral tension-sensing helices from the gate.
Collapse
|
9
|
Hoang Trinh TK, Catalano C, Guo Y. Fabrication of membrane proteins in the form of native cell membrane nanoparticles using novel membrane active polymers. NANOSCALE ADVANCES 2023; 5:5932-5940. [PMID: 37881706 PMCID: PMC10597567 DOI: 10.1039/d3na00381g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Membrane proteins are a widespread class of bio-macromolecules responsible for numerous vital biological processes and serve as therapeutic targets for a vast array of contemporary medications. For membrane protein isolation and purification, detergents have historically been used. Despite this, detergents frequently result in protein instability. Consequently, their application was limited. Recent detergent-free approaches have been invented. Among these, styrene-maleic acid lipid particle (SMALP), diisobutylene-maleic acid lipid particle (DIBMALP), and native cell membrane nanoparticle (NCMN) systems are the most prevalent. The NCMN system intends to create a library of membrane-active polymers suitable for high-resolution structure determination of membrane protein. Design, synthesis, characterization, and comparative application evaluations of three novel classes of NCMN polymers, NCMNP13-x, NCMNP21-x, and NCMNP21b-x, are presented in this article. Although each NCMN polymer can solubilize distinct model membrane proteins and retain native lipids in NCMN particles, only the NCMNP21b-x family produces lipid-protein particles with ideal buffer compatibility and high homogeneity suitable for single-particle cryo-EM analysis. NCMNP21b-x polymers that generate high-quality NCMN particles are particularly desirable for membrane protein structural biology.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
10
|
Allam T, Balderston DE, Chahal MK, Hilton KLF, Hind CK, Keers OB, Lilley RJ, Manwani C, Overton A, Popoola PIA, Thompson LR, White LJ, Hiscock JR. Tools to enable the study and translation of supramolecular amphiphiles. Chem Soc Rev 2023; 52:6892-6917. [PMID: 37753825 DOI: 10.1039/d3cs00480e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This tutorial review focuses on providing a summary of the key techniques used for the characterisation of supramolecular amphiphiles and their self-assembled aggregates; from the understanding of low-level molecular interactions, to materials analysis, use of data to support computer-aided molecular design and finally, the translation of this class of compounds for real world application, specifically within the clinical setting. We highlight the common methodologies used for the study of traditional amphiphiles and build to provide specific examples that enable the study of specialist supramolecular systems. This includes the use of nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray scattering techniques (small- and wide-angle X-ray scattering and single crystal X-ray diffraction), critical aggregation (or micelle) concentration determination methodologies, machine learning, and various microscopy techniques. Furthermore, this review provides guidance for working with supramolecular amphiphiles in in vitro and in vivo settings, as well as the use of accessible software programs, to facilitate screening and selection of druggable molecules. Each section provides: a methodology overview - information that may be derived from the use of the methodology described; a case study - examples for the application of these methodologies; and a summary section - providing methodology specific benefits, limitations and future applications.
Collapse
Affiliation(s)
- Thomas Allam
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Dominick E Balderston
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Charlotte K Hind
- Research and Evaluation, UKHSA, Porton Down, Salisbury SP4 0JG, UK
| | - Olivia B Keers
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Rebecca J Lilley
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Chandni Manwani
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Alix Overton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Precious I A Popoola
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa R Thompson
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa J White
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
11
|
Yang D, Zhao Z, Tajkhorshid E, Gouaux E. Structures and membrane interactions of native serotonin transporter in complexes with psychostimulants. Proc Natl Acad Sci U S A 2023; 120:e2304602120. [PMID: 37436958 PMCID: PMC10629533 DOI: 10.1073/pnas.2304602120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 07/14/2023] Open
Abstract
The serotonin transporter (SERT) is a member of the SLC6 neurotransmitter transporter family that mediates serotonin reuptake at presynaptic nerve terminals. SERT is the target of both therapeutic antidepressant drugs and psychostimulant substances such as cocaine and methamphetamines, which are small molecules that perturb normal serotonergic transmission by interfering with serotonin transport. Despite decades of studies, important functional aspects of SERT such as the oligomerization state of native SERT and its interactions with potential proteins remain unresolved. Here, we develop methods to isolate SERT from porcine brain (pSERT) using a mild, nonionic detergent, utilize fluorescence-detection size-exclusion chromatography to investigate its oligomerization state and interactions with other proteins, and employ single-particle cryo-electron microscopy to elucidate the structures of pSERT in complexes with methamphetamine or cocaine, providing structural insights into psychostimulant recognition and accompanying pSERT conformations. Methamphetamine and cocaine both bind to the central site, stabilizing the transporter in an outward open conformation. We also identify densities attributable to multiple cholesterol or cholesteryl hemisuccinate (CHS) molecules, as well as to a detergent molecule bound to the pSERT allosteric site. Under our conditions of isolation, we find that pSERT is best described as a monomeric entity, isolated without interacting proteins, and is ensconced by multiple cholesterol or CHS molecules.
Collapse
Affiliation(s)
- Dongxue Yang
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Zhiyu Zhao
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
12
|
Trinh TKH, Cabezas AJ, Joshi S, Catalano C, Siddique AB, Qiu W, Deshmukh S, des Georges A, Guo Y. pH-tunable membrane-active polymers, NCMNP2a- x, and their potential membrane protein applications. Chem Sci 2023; 14:7310-7326. [PMID: 37416719 PMCID: PMC10321531 DOI: 10.1039/d3sc01890c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Accurate 3D structures of membrane proteins are essential for comprehending their mechanisms of action and designing specific ligands to modulate their activities. However, these structures are still uncommon due to the involvement of detergents in the sample preparation. Recently, membrane-active polymers have emerged as an alternative to detergents, but their incompatibility with low pH and divalent cations has hindered their efficacy. Herein, we describe the design, synthesis, characterization, and application of a new class of pH-tunable membrane-active polymers, NCMNP2a-x. The results demonstrated that NCMNP2a-x could be used for high-resolution single-particle cryo-EM structural analysis of AcrB in various pH conditions and can effectively solubilize BcTSPO with the function preserved. Molecular dynamic simulation is consistent with experimental data that shed great insights into the working mechanism of this class of polymers. These results demonstrated that NCMNP2a-x might have broad applications in membrane protein research.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Andres Jorge Cabezas
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
| | - Soumil Joshi
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Abu Bakkar Siddique
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Sanket Deshmukh
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
- Department of Chemistry & Biochemistry, City College of New York New York New York 10017 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
13
|
Michon B, López-Sánchez U, Degrouard J, Nury H, Leforestier A, Rio E, Salonen A, Zoonens M. Role of surfactants in electron cryo-microscopy film preparation. Biophys J 2023; 122:1846-1857. [PMID: 37077048 PMCID: PMC10209149 DOI: 10.1016/j.bpj.2023.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/01/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Single-particle electron cryo-microscopy (cryo-EM) has become an effective and straightforward approach to determine the structure of membrane proteins. However, obtaining cryo-EM grids of sufficient quality for high-resolution structural analysis remains a major bottleneck. One of the difficulties arises from the presence of detergents, which often leads to a lack of control of the ice thickness. Amphipathic polymers such as amphipols (APols) are detergent substitutes, which have proven to be valuable tools for cryo-EM studies. In this work, we investigate the physico-chemical behavior of APol- and detergent-containing solutions and show a correlation with the properties of vitreous thin films in cryo-EM grids. This study provides new insight on the potential of APols, allowing a better control of ice thickness while limiting protein adsorption at the air-water interface, as shown with the full-length mouse serotonin 5-HT3A receptor whose structure has been solved in APol. These findings may speed up the process of grid optimization to obtain high-resolution structures of membrane proteins.
Collapse
Affiliation(s)
- Baptiste Michon
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Paris, France
| | | | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Hugues Nury
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France.
| | - Emmanuelle Rio
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Anniina Salonen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Manuela Zoonens
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Paris, France.
| |
Collapse
|
14
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
15
|
Marconnet A, Michon B, Prost B, Solgadi A, Le Bon C, Giusti F, Tribet C, Zoonens M. Influence of Hydrophobic Groups Attached to Amphipathic Polymers on the Solubilization of Membrane Proteins along with Their Lipids. Anal Chem 2022; 94:14151-14158. [PMID: 36200347 DOI: 10.1021/acs.analchem.2c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.
Collapse
Affiliation(s)
- Anaïs Marconnet
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Baptiste Michon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Bastien Prost
- UMS-IPSIT SAMM, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- UMS-IPSIT SAMM, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Fabrice Giusti
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Christophe Tribet
- P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Manuela Zoonens
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
16
|
Krishnarjuna B, Ramamoorthy A. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Biomolecules 2022; 12:1076. [PMID: 36008970 PMCID: PMC9406181 DOI: 10.3390/biom12081076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Atomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area. For example, the development of a variety of lipid-nanodiscs has enabled stable reconstitution and structural and functional studies of membrane proteins. In particular, the ability of synthetic amphipathic polymers to isolate membrane proteins directly from the cell membrane, along with the associated membrane components such as lipids, without the use of a detergent, has opened new avenues to study the structure and function of membrane proteins using a variety of biophysical and biological approaches. This review article is focused on covering the various polymers and approaches developed and their applications for the functional reconstitution and structural investigation of membrane proteins. The unique advantages and limitations of the use of synthetic polymers are also discussed.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
17
|
Advances in membrane mimetics and mass spectrometry for understanding membrane structure and function. Curr Opin Chem Biol 2022; 69:102157. [DOI: 10.1016/j.cbpa.2022.102157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|