1
|
Vaglietti S, Boggio Bozzo S, Ghirardi M, Fiumara F. Divergent evolution of low-complexity regions in the vertebrate CPEB protein family. FRONTIERS IN BIOINFORMATICS 2025; 5:1491735. [PMID: 40182702 PMCID: PMC11965684 DOI: 10.3389/fbinf.2025.1491735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/28/2025] [Indexed: 04/05/2025] Open
Abstract
The cytoplasmic polyadenylation element-binding proteins (CPEBs) are a family of translational regulators involved in multiple biological processes, including memory-related synaptic plasticity. In vertebrates, four paralogous genes (CPEB1-4) encode proteins with phylogenetically conserved C-terminal RNA-binding domains and variable N-terminal regions (NTRs). The CPEB NTRs are characterized by low-complexity regions (LCRs), including homopolymeric amino acid repeats (AARs), and have been identified as mediators of liquid-liquid phase separation (LLPS) and prion-like aggregation. After their appearance following gene duplication, the four paralogous CPEB proteins functionally diverged in terms of activation mechanisms and modes of mRNA binding. The paralog-specific NTRs may have contributed substantially to such functional diversification but their evolutionary history remains largely unexplored. Here, we traced the evolution of vertebrate CPEBs and their LCRs/AARs focusing on primary sequence composition, complexity, repetitiveness, and their possible functional impact on LLPS propensity and prion-likeness. We initially defined these composition- and function-related quantitative parameters for the four human CPEB paralogs and then systematically analyzed their evolutionary variation across more than 500 species belonging to nine major clades of different stem age, from Chondrichthyes to Euarchontoglires, along the vertebrate lineage. We found that the four CPEB proteins display highly divergent, paralog-specific evolutionary trends in composition- and function-related parameters, primarily driven by variation in their LCRs/AARs and largely related to clade stem ages. These findings shed new light on the molecular and functional evolution of LCRs in the CPEB protein family, in both quantitative and qualitative terms, highlighting the emergence of CPEB2 as a proline-rich prion-like protein in younger vertebrate clades, including Primates.
Collapse
Affiliation(s)
| | | | | | - Ferdinando Fiumara
- “Rita Levi-Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Baños‐Jaime B, Uceda‐Mayo AB, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Velázquez‐Cruz A, Velázquez‐Campoy A, Corrales‐Guerrero L, De la Rosa MA, Díaz‐Moreno I. Evolutionary Pro-To-Thr Mutation in the Intrinsically Disordered Domain of ANP32 Family Members Modulates Their Target Binding Modes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415566. [PMID: 39887951 PMCID: PMC11948038 DOI: 10.1002/advs.202415566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 02/01/2025]
Abstract
Gene duplication has allowed protein evolution toward novel functions and mechanisms. The differences between paralogous genes frequently rely on the sequence of disordered regions. For instance, in mammals, the chaperones ANP32A and ANP32B share a common evolutionary line and have some exchangeable functions based on their similar N-terminal domains. Nevertheless, their C-terminal low-complexity-acidic-regions (LCARs) display substantial sequence differences, unveiling some degree of variability between them, in agreement with their different tissue-specific expression patterns. These structural and computational results indicate that a substitution in the vicinity of the nuclear localization signal (NLS), of Pro in ANP32A for Thr in ANP32B, determines the overall compactness of the C-terminal LCAR. The different structural properties of the disordered region affect the binding mode of ANP32 members to their targets. This type of divergent binding mode is exemplified with the extra-mitochondrial cytochrome c (Cc), a well-known ANP32B partner and which now determine also binds to ANP32A; and with the RNA binding protein HuR, whose export to the cytoplasm is mediated by ANP32 proteins under stress. Therefore, differential expression patterns of ANP32A or ANP32B may affect the regulation of Cc and HuR and can help to explain the distinct roles of these proteins in diseases.
Collapse
Grants
- FPU013/04373 Ministerio de Educación y Formación Profesional
- FPU18/06577 Ministerio de Educación y Formación Profesional
- FPU016/01513 Ministerio de Educación y Formación Profesional
- P18-FR-3487 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- BIO-198 Agencia de Innovación y Desarrollo de Andalucía
- PID2021-126663NB-100 Ministerio de Ciencia, Innovación y Universidades
- PAIDI-Doctor 2020 DOC_00796 Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía
- VI PPIT-US University of Seville
- US/JUNTA/FEDER European Regional Development Fund
- UE European Regional Development Fund
- PAIDI-Doctor 2020 DOC_00796 Fundación Ramón Areces
- European Social Fund
- Ministerio de Educación y Formación Profesional
- Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- Agencia de Innovación y Desarrollo de Andalucía
- Ministerio de Ciencia, Innovación y Universidades
- Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía
- University of Seville
- European Regional Development Fund
- Fundación Ramón Areces
Collapse
Affiliation(s)
- Blanca Baños‐Jaime
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Ana B. Uceda‐Mayo
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Adrián Velázquez‐Campoy
- Institute for Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversity of ZaragozaC. Mariano EsquillorZaragoza50018Spain
- Departament of Biochemistry and Molecular and Cellular BiologyUniversity of ZaragozaC. Miguel Servet 177Zaragoza50013Spain
- Institute for Health Research of Aragón (IIS Aragon)Avda. San Juan Bosco 13Zaragoza50009Spain
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd)Av. Monforte de Lemos 3–5Madrid28029Spain
| | - Laura Corrales‐Guerrero
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
- Present address:
Institute of Plant Biochemistry and Photosynthesis (IBVF)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| |
Collapse
|
3
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
4
|
Landreh M, Osterholz H, Chen G, Knight SD, Rising A, Leppert A. Liquid-liquid crystalline phase separation of spider silk proteins. Commun Chem 2024; 7:260. [PMID: 39533043 PMCID: PMC11557605 DOI: 10.1038/s42004-024-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins can be considered an intermediate solubility regime between disperse solutions and solid fibers. While LLPS has been described for several pathogenic amyloids, recent evidence suggests that it is similarly relevant for functional amyloids. Here, we review the evidence that links spider silk proteins (spidroins) and LLPS and its role in the spinning process. Major ampullate spidroins undergo LLPS mediated by stickers and spacers in their repeat regions. During spinning, the spidroins droplets shift from liquid to crystalline states. Shear force, altered ion composition, and pH changes cause micelle-like spidroin assemblies to form an increasingly ordered liquid-crystalline phase. Interactions between polyalanine regions in the repeat regions ultimately yield the characteristic β-crystalline structure of mature dragline silk fibers. Based on these findings, we hypothesize that liquid-liquid crystalline phase separation (LLCPS) can describe the molecular and macroscopic features of the phase transitions of major ampullate spidroins during spinning and speculate whether other silk types may use a similar mechanism to convert from liquid dope to solid fiber.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Hannah Osterholz
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gefei Chen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Stefan D Knight
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Axel Leppert
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
5
|
Pérez-Ropero G, Pérez-Ràfols A, Martelli T, Danielson UH, Buijs J. Unraveling the Bivalent and Rapid Interactions Between a Multivalent RNA Recognition Motif and RNA: A Kinetic Approach. Biochemistry 2024; 63:2816-2829. [PMID: 39397705 PMCID: PMC11542179 DOI: 10.1021/acs.biochem.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs. The interactions of the individual RRMs with all RNA variants were well described by a 1:1 interaction model. The interaction between the MSI1 variant encompassing both RRM motifs was bivalent and rapid for all RNA variants. Due to difficulties in fitting this complex data using standard procedures, we devised a new method to quantify the interactions. It revealed that two RRMs in tandem resulted in a significantly longer residence time than a single RRM. It also showed that RNA with double UAG binding motifs and potential hairpin structures forms less stable bivalent complexes with MSI1 than the single UAG motif containing linear RNA. Substituting the UAG binding motif with a CAG sequence resulted in a reduction of the affinity of the individual RRMs, but for MSI1, this reduction was strongly enhanced, demonstrating the importance of bivalency for specificity. This study has provided new insights into the interaction between MSI1 and RNA and an understanding of how individual domains contribute to the overall interaction. It provides an explanation for why many RNA-binding proteins contain dual RRMs.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, U.K.
| | - Tommasso Martelli
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
| | - U. Helena Danielson
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Science for
Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala SE 751 23, Sweden
| | - Jos Buijs
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala SE 751 85, Sweden
| |
Collapse
|
6
|
Boyd-Shiwarski CR, Shiwarski DJ, Subramanya AR. A New Phase for WNK Kinase Signaling Complexes as Biomolecular Condensates. Physiology (Bethesda) 2024; 39:0. [PMID: 38624245 PMCID: PMC11460533 DOI: 10.1152/physiol.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The purpose of this review is to highlight transformative advances that have been made in the field of biomolecular condensates, with special emphasis on condensate material properties, physiology, and kinases, using the With-No-Lysine (WNK) kinases as a prototypical example. To convey how WNK kinases illustrate important concepts for biomolecular condensates, we start with a brief history, focus on defining features of biomolecular condensates, and delve into some examples of how condensates are implicated in cellular physiology (and pathophysiology). We then highlight how WNK kinases, through the action of "WNK droplets" that ubiquitously regulate intracellular volume and kidney-specific "WNK bodies" that are implicated in distal tubule salt reabsorption and potassium homeostasis, exemplify many of the defining features of condensates. Finally, this review addresses the controversies within this emerging field and questions to address.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel J Shiwarski
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
Dao TP, Rajendran A, Galagedera SKK, Haws W, Castañeda CA. Short disordered termini and proline-rich domain are major regulators of UBQLN1/2/4 phase separation. Biophys J 2024; 123:1449-1457. [PMID: 38041404 PMCID: PMC11163289 DOI: 10.1016/j.bpj.2023.11.3401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
Highly homologous ubiquitin-binding shuttle proteins UBQLN1, UBQLN2, and UBQLN4 differ in both their specific protein quality control functions and their propensities to localize to stress-induced condensates, cellular aggregates, and aggresomes. We previously showed that UBQLN2 phase separates in vitro, and that the phase separation propensities of UBQLN2 deletion constructs correlate with their ability to form condensates in cells. Here, we demonstrated that full-length UBQLN1, UBQLN2, and UBQLN4 exhibit distinct phase behaviors in vitro. Strikingly, UBQLN4 phase separates at a much lower saturation concentration than UBQLN1. However, neither UBQLN1 nor UBQLN4 phase separates with a strong temperature dependence, unlike UBQLN2. We determined that the temperature-dependent phase behavior of UBQLN2 stems from its unique proline-rich region, which is absent in the other UBQLNs. We found that the short N-terminal disordered regions of UBQLN1, UBQLN2, and UBQLN4 inhibit UBQLN phase separation via electrostatics interactions. Charge variants of the N-terminal regions exhibit altered phase behaviors. Consistent with the sensitivity of UBQLN phase separation to the composition of the N-terminal regions, epitope tags placed on the N-termini of the UBQLNs tune phase separation. Overall, our in vitro results have important implications for studies of UBQLNs in cells, including the identification of phase separation as a potential mechanism to distinguish the cellular roles of UBQLNs and the need to apply caution when using epitope tags to prevent experimental artifacts.
Collapse
Affiliation(s)
- Thuy P Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York
| | - Anitha Rajendran
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York
| | | | - William Haws
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, New York; BioInspired Institute, Syracuse University, Syracuse, New York.
| |
Collapse
|
8
|
Fuentes-Jiménez DA, Salinas LS, Morales-Oliva E, Ramírez-Ramírez VA, Arciniega M, Navarro RE. Two predicted α-helices within the prion-like domain of TIAR-1 play a crucial role in its association with stress granules in Caenorhabditis elegans. Front Cell Dev Biol 2023; 11:1265104. [PMID: 38161334 PMCID: PMC10757852 DOI: 10.3389/fcell.2023.1265104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Stress granules (SGs) are sites for mRNA storage, protection, and translation repression. TIA1 and TIAR1 are two RNA-binding proteins that are key players in SGs formation in mammals. TIA1/TIAR have a prion-like domain (PrD) in their C-terminal that promotes liquid-phase separation. Lack of any TIA1/TIAR has severe consequences in mice. However, it is not clear whether the failure to form proper SGs is the cause of any of these problems. We disrupted two predicted α-helices within the prion-like domain of the Caenohabditis elegans TIA1/TIAR homolog, TIAR-1, to test whether its association with SGs is important for the nematode. We found that tiar-1 PrD mutant animals continued to form TIAR-1 condensates under stress in the C. elegans gonad. Nonetheless, TIAR-1 condensates appeared fragile and disassembled quickly after stress. Apparently, the SGs continued to associate regularly as observed with CGH-1, an SG marker. Like tiar-1-knockout nematodes, tiar-1 PrD mutant animals exhibited fertility problems and a shorter lifespan. Notwithstanding this, tiar-1 PrD mutant nematodes were no sensitive to stress. Our data demonstrate that the predicted prion-like domain of TIAR-1 is important for its association with stress granules. Moreover, this domain may also play a significant role in various TIAR-1 functions unrelated to stress, such as fertility, embryogenesis and lifespan.
Collapse
Affiliation(s)
- D. A. Fuentes-Jiménez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - L. S. Salinas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E. Morales-Oliva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - V. A. Ramírez-Ramírez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M. Arciniega
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R. E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|
10
|
Elena-Real CA, Mier P, Sibille N, Andrade-Navarro MA, Bernadó P. Structure-function relationships in protein homorepeats. Curr Opin Struct Biol 2023; 83:102726. [PMID: 37924569 DOI: 10.1016/j.sbi.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Homorepeats (or polyX), protein segments containing repetitions of the same amino acid, are abundant in proteomes from all kingdoms of life and are involved in crucial biological functions as well as several neurodegenerative and developmental diseases. Mainly inserted in disordered segments of proteins, the structure/function relationships of homorepeats remain largely unexplored. In this review, we summarize present knowledge for the most abundant homorepeats, highlighting the role of the inherent structure and the conformational influence exerted by their flanking regions. Recent experimental and computational methods enable residue-specific investigations of these regions and promise novel structural and dynamic information for this elusive group of proteins. This information should increase our knowledge about the structural bases of phenomena such as liquid-liquid phase separation and trinucleotide repeat disorders.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France. https://twitter.com/carloselenareal
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
11
|
Dao TP, Rajendran A, Galagedera SKK, Haws W, Castañeda CA. Short N-terminal disordered regions and the proline-rich domain are major regulators of phase transitions for full-length UBQLN1, UBQLN2 and UBQLN4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559790. [PMID: 37808720 PMCID: PMC10557701 DOI: 10.1101/2023.09.27.559790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Highly homologous ubiquitin-binding shuttle proteins UBQLN1, UBQLN2 and UBQLN4 differ in both their specific protein quality control functions and their propensities to localize to stress-induced condensates, cellular aggregates and aggresomes. We previously showed that UBQLN2 phase separates in vitro, and that the phase separation propensities of UBQLN2 deletion constructs correlate with their ability to form condensates in cells. Here, we demonstrated that full-length UBQLN1, UBQLN2 and UBQLN4 exhibit distinct phase behaviors in vitro. Strikingly, UBQLN4 phase separates at a much lower saturation concentration than UBQLN1. However, neither UBQLN1 nor UBQLN4 phase separates with a strong temperature dependence, unlike UBQLN2. We determined that the temperature-dependent phase behavior of UBQLN2 stems from its unique proline-rich (Pxx) region, which is absent in the other UBQLNs. We found that the short N-terminal disordered regions of UBQLN1, UBQLN2 and UBQLN4 inhibit UBQLN phase separation via electrostatics interactions. Charge variants of the N-terminal regions exhibit altered phase behaviors. Consistent with the sensitivity of UBQLN phase separation to the composition of the N-terminal regions, epitope tags placed on the N-termini of the UBQLNs tune phase separation. Overall, our in vitro results have important implications for studies of UBQLNs in cells, including the identification of phase separation as a potential mechanism to distinguish the cellular roles of UBQLNs, and the need to apply caution when using epitope tags to prevent experimental artifacts.
Collapse
Affiliation(s)
- Thuy P. Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Anitha Rajendran
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | | | - William Haws
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A. Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
12
|
Ho W, Huang H, Huang J. IFF: Identifying key residues in intrinsically disordered regions of proteins using machine learning. Protein Sci 2023; 32:e4739. [PMID: 37498545 PMCID: PMC10443345 DOI: 10.1002/pro.4739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Conserved residues in protein homolog sequence alignments are structurally or functionally important. For intrinsically disordered proteins or proteins with intrinsically disordered regions (IDRs), however, alignment often fails because they lack a steric structure to constrain evolution. Although sequences vary, the physicochemical features of IDRs may be preserved in maintaining function. Therefore, a method to retrieve common IDR features may help identify functionally important residues. We applied unsupervised contrastive learning to train a model with self-attention neuronal networks on human IDR orthologs. Parameters in the model were trained to match sequences in ortholog pairs but not in other IDRs. The trained model successfully identifies previously reported critical residues from experimental studies, especially those with an overall pattern (e.g., multiple aromatic residues or charged blocks) rather than short motifs. This predictive model can be used to identify potentially important residues in other proteins, improving our understanding of their functions. The trained model can be run directly from the Jupyter Notebook in the GitHub repository using Binder (mybinder.org). The only required input is the primary sequence. The training scripts are available on GitHub (https://github.com/allmwh/IFF). The training datasets have been deposited in an Open Science Framework repository (https://osf.io/jk29b).
Collapse
Affiliation(s)
- Wen‐Lin Ho
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Hsuan‐Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jie‐rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
13
|
Sharif J, Koseki H, Parrish NF. Bridging multiple dimensions: roles of transposable elements in higher-order genome regulation. Curr Opin Genet Dev 2023; 80:102035. [PMID: 37028152 DOI: 10.1016/j.gde.2023.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 04/09/2023]
Abstract
Transposable elements (TEs) such as endogenous retroviruses (ERVs), long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs) occupy nearly half of typical mammalian genomes. Previous studies show that these parasitic elements, especially LINEs and ERVs, provide important activities promoting host germ cell and placental development, preimplantation embryogenesis, and maintenance of pluripotent stem cells. Despite being the most numerically abundant type of TEs in the genome, the consequences of SINEs on host genome regulation are less well characterized than those of ERVs and LINEs. Interestingly, recent findings reveal that SINEs recruit the key architectural protein CTCF (CCCTC-binding factor), indicating a role of these elements for 3D genome regulation. Higher-order nuclear structures are linked with important cellular functions such as gene regulation and DNA replication. SINEs and other TEs, therefore, may mediate distinct physiological processes with benefits to the host by modulating the 3D genome.
Collapse
Affiliation(s)
- Jafar Sharif
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Nicholas F Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan.
| |
Collapse
|
14
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|
15
|
Deutsch N, Pajkos M, Erdős G, Dosztányi Z. DisCanVis: Visualizing integrated structural and functional annotations to better understand the effect of cancer mutations located within disordered proteins. Protein Sci 2023; 32:e4522. [PMID: 36452990 PMCID: PMC9793970 DOI: 10.1002/pro.4522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in a wide range of biological processes and have been associated with various diseases, including cancer. In the last few years, cancer genome projects have systematically collected genetic variations underlying multiple cancer types. In parallel, the number and different types of disordered proteins characterized by experimental methods have also significantly increased. Nevertheless, the role of IDPs in various types of cancer is still not well understood. In this work, we present DisCanVis, a novel visualization tool for cancer mutations with a special focus on IDPs. In order to aid the interpretation of observed mutations, genome level information is combined with information about the structural and functional properties of proteins. The web server enables users to inspect individual proteins, collect examples with existing annotations of protein disorder and associated function or to discover currently uncharacterized examples with likely disease relevance. Through a REST API interface and precompiled tables the analysis can be extended to a group of proteins.
Collapse
Affiliation(s)
- Norbert Deutsch
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Mátyás Pajkos
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Gábor Erdős
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Zsuzsanna Dosztányi
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| |
Collapse
|
16
|
Ibrahim AY, Khaodeuanepheng NP, Amarasekara DL, Correia JJ, Lewis KA, Fitzkee NC, Hough LE, Whitten ST. Intrinsically disordered regions that drive phase separation form a robustly distinct protein class. J Biol Chem 2022; 299:102801. [PMID: 36528065 PMCID: PMC9860499 DOI: 10.1016/j.jbc.2022.102801] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Protein phase separation is thought to be a primary driving force for the formation of membrane-less organelles, which control a wide range of biological functions from stress response to ribosome biogenesis. Among phase-separating (PS) proteins, many have intrinsically disordered regions (IDRs) that are needed for phase separation to occur. Accurate identification of IDRs that drive phase separation is important for testing the underlying mechanisms of phase separation, identifying biological processes that rely on phase separation, and designing sequences that modulate phase separation. To identify IDRs that drive phase separation, we first curated datasets of folded, ID, and PS ID sequences. We then used these sequence sets to examine how broadly existing amino acid property scales can be used to distinguish between the three classes of protein regions. We found that there are robust property differences between the classes and, consequently, that numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. This result indicates that multiple, redundant mechanisms contribute to the formation of phase-separated droplets from IDRs. The top-performing scales were used to further optimize our previously developed predictor of PS IDRs, ParSe. We then modified ParSe to account for interactions between amino acids and obtained reasonable predictive power for mutations that have been designed to test the role of amino acid interactions in driving protein phase separation. Collectively, our findings provide further insight into the classification of IDRs and the elements involved in protein phase separation.
Collapse
Affiliation(s)
- Ayyam Y. Ibrahim
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | | | | | - John J. Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Karen A. Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | | | - Loren E. Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA,For correspondence: Steven T. Whitten; Loren E. Hough
| | - Steven T. Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA,For correspondence: Steven T. Whitten; Loren E. Hough
| |
Collapse
|