1
|
Du P, Tang K, Chen X, Xin Y, Hu B, Meng J, Hu G, Zhang C, Li K, Tan Y. Intercellular contractile force attenuates chemosensitivity through Notch-MVP-mediated nuclear drug export. Proc Natl Acad Sci U S A 2025; 122:e2417626122. [PMID: 40333760 DOI: 10.1073/pnas.2417626122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Resistance to chemotherapeutics is one major challenge to clinical effectiveness of cancer treatment and is primarily interpreted by various biochemical mechanisms. This study establishes an inverse correlation between tumor cell contractility and chemosensitivity. In both clinical biopsies and cancer cell lines, high/low actomyosin-mediated contractile force attenuates/enhances the vulnerability to chemotherapy, which depends on intercellular force propagation. Cell-cell interaction force activates the mechanosensitive Notch signaling that upregulates the downstream effector major vault protein, which facilitates the export of chemotherapy drugs from nuclei, leading to the reduction of chemosensitivity. Cellular contractility promotes the tolerance of tumor xenografts to chemotherapy and sustains tumor growth in vivo, which can be reversed by the inhibition of contractile force, Notch signaling, or major vault protein. Further, the actomyosin-Notch signaling is associated with drug resistance and cancer recurrence of patients. These findings unveil a regulatory role of intercellular force in chemosensitivity, which could be harnessed as a promising target for cancer mechanotherapeutics.
Collapse
Affiliation(s)
- Pengyu Du
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou 550003, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bin Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianfeng Meng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Keming Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Vieira DF, Fernandes MS, Figueiredo J, Melo S, Moreira AM, Machado JC, Seruca R, Sanches JM. A novel computational approach to dissect the cytoskeletal architecture of cancer cells with invasive potential. Sci Rep 2025; 15:5353. [PMID: 39948135 PMCID: PMC11825699 DOI: 10.1038/s41598-024-82538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 02/16/2025] Open
Abstract
The identification of cancer cells with invasive and metastatic potential remains challenging. In recent years, it became evident that the organization of the cytoskeleton is dynamically orchestrated during cell transformation, but the impact of its remodelling is still largely unknown. In this study, we have developed a computational pipeline to characterize the cytoskeletal architecture of cancer cells and investigate fine-tuned cytoskeletal alterations. Our results have shown that the proposed computational framework was able to dissect unique cytoskeletal cues associated with invasive capacity. These include quantity, orientation, compactness, radiality, and morphology of microtubules. Validating our approach, we verified that microtubules of cells with disrupted E-cadherin and increased invasive rates are shorter, have disperse orientations and are more compactly distributed. Ultimately, this work provides a comprehensive portrait of the cytoskeleton reorganization that could be used as a proxy for automated analysis of cellular behaviour.
Collapse
Affiliation(s)
- Diogo Fróis Vieira
- Institute for Systems and Robotics (ISR), LARSyS, Instituto Superior Técnico (IST), Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Maria Sofia Fernandes
- i3S - Institute for Research and Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Joana Figueiredo
- i3S - Institute for Research and Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Pathology, Medical Faculty of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Soraia Melo
- Institute for Systems and Robotics (ISR), LARSyS, Instituto Superior Técnico (IST), Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
- i3S - Institute for Research and Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Ana Margarida Moreira
- i3S - Institute for Research and Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - José Carlos Machado
- i3S - Institute for Research and Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Pathology, Medical Faculty of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Seruca
- i3S - Institute for Research and Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Pathology, Medical Faculty of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - João Miguel Sanches
- Institute for Systems and Robotics (ISR), LARSyS, Instituto Superior Técnico (IST), Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| |
Collapse
|
3
|
Keshavanarayana P, Aparicio-Yuste R, Spill F, Gomez-Benito MJ, Bastounis EE. Leveraging computational modeling to explore epithelial and endothelial cell monolayer mechanobiology. Trends Cell Biol 2025:S0962-8924(24)00282-4. [PMID: 39837738 DOI: 10.1016/j.tcb.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025]
Abstract
Endothelial cells (ENCs) and epithelial cells (EPCs) form monolayers whose barrier function is critical for the maintenance of physiological processes and extremely sensitive to mechanical cues. Computational models have emerged as powerful tools to elucidate how mechanical cues impact the behavior of these monolayers in health and disease. Herein, the importance of mechanics in regulating ENC and EPC monolayer behavior is established, highlighting similarities and differences in various biological contexts. Concurrently, computational approaches and their importance in accelerating mechanobiology studies are discussed, emphasizing their limitations and suggesting future directions. The aim is to inspire further synergies between cell biologists and modelers, which are crucial for accelerating cell mechanobiology research.
Collapse
Affiliation(s)
- Pradeep Keshavanarayana
- School of Mathematics, University of Birmingham, Birmingham, UK; Centre for Computational Medicine, University College London, London, UK
| | - Raul Aparicio-Yuste
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, UK.
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Prencipe G, Cerveró-Varona A, Perugini M, Sulcanese L, Iannetta A, Haidar-Montes AA, Stöckl J, Canciello A, Berardinelli P, Russo V, Barboni B. Amphiregulin orchestrates the paracrine immune-suppressive function of amniotic-derived cells through its interplay with COX-2/PGE 2/EP4 axis. iScience 2024; 27:110508. [PMID: 39156643 PMCID: PMC11326934 DOI: 10.1016/j.isci.2024.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
The paracrine crosstalk between amniotic-derived membranes (AMs)/epithelial cells (AECs) and immune cells is pivotal in tissue healing following inflammation. Despite evidence collected to date, gaps in understanding the underlying molecular mechanisms have hindered clinical applications. The present study represents a significant step forward demonstrating that amphiregulin (AREG) orchestrates the native immunomodulatory functions of amniotic derivatives via the COX-2/PGE2/EP4 axis. The results highlight the immunosuppressive efficacy of PGE2-dependent AREG release, dampening PBMCs' activation, and NFAT pathway in Jurkat reporter cells via TGF-β signaling. Moreover, AREG emerges as a key protein mediator by attenuating acute inflammatory response in Tg(lysC:DsRed2) zebrafish larvae. Notably, the interplay of diverse COX-2/PGE2 pathway activators enables AM/AEC to adapt rapidly to external stimuli (LPS and/or stretching) through a responsive positive feedback loop on the AREG/EGFR axis. These findings offer valuable insights for developing innovative cell-free therapies leveraging the potential of amniotic derivatives in immune-mediated diseases and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Arlette Alina Haidar-Montes
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
5
|
Xu Y, Yang Y, Wang Z, Sjöström M, Jiang Y, Tang Y, Cheng S, Deng S, Wang C, Gonzalez J, Johnson NA, Li X, Li X, Metang LA, Mukherji A, Xu Q, Tirado CR, Wainwright G, Yu X, Barnes S, Hofstad M, Chen Y, Zhu H, Hanker AB, Raj GV, Zhu G, He HH, Wang Z, Arteaga CL, Liang H, Feng FY, Wang Y, Wang T, Mu P. ZNF397 Deficiency Triggers TET2-Driven Lineage Plasticity and AR-Targeted Therapy Resistance in Prostate Cancer. Cancer Discov 2024; 14:1496-1521. [PMID: 38591846 PMCID: PMC11285331 DOI: 10.1158/2159-8290.cd-23-0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming that allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified zinc finger protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a ten-eleven translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR-targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Significance: This study reveals a bifurcated role of ZNF397, and a TET2-driven epigenetic mechanism regulating tumor lineage plasticity and therapy response in prostate cancer, enhances the understanding of drug resistance, and unveils a new therapeutic strategy for overcoming androgen receptor-targeted therapy resistance.
Collapse
Affiliation(s)
- Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
| | - Zhaoning Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California.
| | - Martin Sjöström
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.
| | - Yuyin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, Louisiana.
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Nickolas A. Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xiang Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Lauren A. Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Quanhui Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Carla R. Tirado
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Garrett Wainwright
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xinzhe Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - Spencer Barnes
- Bioinformatics Core Facility of the Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, NYC, New York, New York.
| | - Hong Zhu
- Division of Biostatistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - Ariella B. Hanker
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Ganesh V. Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Housheng H. He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - Carlos L. Arteaga
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Felix Y. Feng
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | - Yunguan Wang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229.
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
6
|
Hüsnügil HH, Güleç Taşkıran AE, Güderer I, Nehri LN, Oral G, Menemenli NŞ, Özcan Ö, Noghreh A, Akyol A, Banerjee S. Lysosomal alkalinization in nutrient restricted cancer cells activates cytoskeletal rearrangement to enhance partial epithelial to mesenchymal transition. Transl Oncol 2024; 41:101860. [PMID: 38262111 PMCID: PMC10832471 DOI: 10.1016/j.tranon.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION Nutrient restriction in cancer cells can activate a number of stress response pathways for cell survival. We aimed to determine mechanistically how nutrient depletion in colorectal cancer (CRC) cells leads to cellular adaptation. MATERIALS AND METHODS Cell survival under nutrient depletion (ND) was evaluated by colony formation and in vivo tumor formation assays. Lysosomes are activated with ND; therefore, we incubated the ND cells with the V-ATPase inhibitor Bafilomycin A1 (ND+Baf). The expression of epithelial and mesenchymal markers with ND+Baf was determined by RNA sequencing and RT-qPCR while motility was determined with an in vivo Chorioallantoic membrane (CAM) assay. Reorganization of cytoskeletal network and lysosomal positioning was determined by immunocytochemistry. RESULTS 4 different colorectal cancer (CRC) cell lines under ND showed high viability, tumor forming ability and increased expression of one or more epithelial and mesenchymal markers, suggesting the activation of partial (p)-EMT. We observed a further increase in p-EMT markers, numerous membrane protrusions, decreased cell-cell adhesion in 3D, and increased motility in ND+Baf cells. The protrusions in the ND+Baf cells were primarily mediated by microtubules and enabled the relocalization of lysosomes from the perinuclear region to the periphery. CONCLUSIONS ND activated p-EMT in CRC cells, which was exacerbated by lysosomal alkalinization. The ND+Baf cells also showed numerous protrusions containing lysosomes, which may lead to lysosomal exocytosis and enhanced motility.
Collapse
Affiliation(s)
- H Hazal Hüsnügil
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aliye Ezgi Güleç Taşkıran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey; Department of Molecular Biology and Genetics, Başkent University, Ankara, Turkey
| | - Ismail Güderer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Leman Nur Nehri
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Göksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | | | - Özün Özcan
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ariana Noghreh
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aytekin Akyol
- Hacettepe University Faculty of Medicine, Department of Medical Pathology, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey; Cancer Systems Biology Laboratory CanSyL, Orta Dogu Teknik Universitesi, Ankara, Turkey.
| |
Collapse
|
7
|
Kim YJ, Lee DB, Jeong E, Jeon JY, Kim HD, Kang H, Kim YK. Magnetically Stimulated Integrin Binding Alters Cell Polarity and Affects Epithelial-Mesenchymal Plasticity in Metastatic Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8365-8377. [PMID: 38319067 DOI: 10.1021/acsami.3c16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Inorganic nanoparticles (NPs) have been widely recognized for their stability and biocompatibility, leading to their widespread use in biomedical applications. Our study introduces a novel approach that harnesses inorganic magnetic nanoparticles (MNPs) to stimulate apical-basal polarity and induce epithelial traits in cancer cells, targeting the hybrid epithelial/mesenchymal (E/M) state often linked to metastasis. We employed mesocrystalline iron oxide MNPs to apply an external magnetic field, disrupting normal cell polarity and simulating an artificial cellular environment. These led to noticeable changes in the cell shape and function, signaling a shift toward the hybrid E/M state. Our research suggests that apical-basal stimulation in cells through MNPs can effectively modulate key cellular markers associated with both epithelial and mesenchymal states without compromising the structural properties typical of mesenchymal cells. These insights advance our understanding of how cells respond to physical cues and pave the way for novel cancer treatment strategies. We anticipate that further research and validation will be instrumental in exploring the full potential of these findings in clinical applications, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Dae Beom Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Eunjin Jeong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Joo Yeong Jeon
- Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine─Phoenix, Phoenix, Arizona 85004, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Young Keun Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
Desroches S, Harris AR. Quantifying cytoskeletal organization from optical microscopy data. Front Cell Dev Biol 2024; 11:1327994. [PMID: 38234685 PMCID: PMC10792062 DOI: 10.3389/fcell.2023.1327994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a pivotal role in a broad range of physiological processes including directing cell shape and subcellular organization, determining cell mechanical properties, and sensing and transducing mechanical forces. The versatility of the actin cytoskeleton arises from the ability of actin filaments to assemble into higher order structures through their interaction with a vast set of regulatory proteins. Actin filaments assemble into bundles, meshes, and networks, where different combinations of these structures fulfill specific functional roles. Analyzing the organization and abundance of different actin structures from optical microscopy data provides a valuable metric for assessing cell physiological function and changes associated with disease. However, quantitative measurements of the size, abundance, orientation, and distribution of different types of actin structure remains challenging both from an experimental and image analysis perspective. In this review, we summarize image analysis methods for extracting quantitative values that can be used for characterizing the organization of actin structures and provide selected examples. We summarize the potential sample types and metric reported with different approaches as a guide for selecting an image analysis strategy.
Collapse
Affiliation(s)
- Sarah Desroches
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
- Ottawa-Carleton Institute for Biomedical Engineering Graduate Program, Ottawa, ON, Canada
| | - Andrew R. Harris
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
9
|
Subhadarshini S, Markus J, Sahoo S, Jolly MK. Dynamics of Epithelial-Mesenchymal Plasticity: What Have Single-Cell Investigations Elucidated So Far? ACS OMEGA 2023; 8:11665-11673. [PMID: 37033874 PMCID: PMC10077445 DOI: 10.1021/acsomega.2c07989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a key driver of cancer metastasis and therapeutic resistance, through which cancer cells can reversibly and dynamically alter their molecular and functional traits along the epithelial-mesenchymal spectrum. While cells in the epithelial phenotype are usually tightly adherent, less metastatic, and drug-sensitive, those in the hybrid epithelial/mesenchymal and/or mesenchymal state are more invasive, migratory, drug-resistant, and immune-evasive. Single-cell studies have emerged as a powerful tool in gaining new insights into the dynamics of EMP across various cancer types. Here, we review many recent studies that employ single-cell analysis techniques to better understand the dynamics of EMP in cancer both in vitro and in vivo. These single-cell studies have underlined the plurality of trajectories cells can traverse during EMP and the consequent heterogeneity of hybrid epithelial/mesenchymal phenotypes seen at both preclinical and clinical levels. They also demonstrate how diverse EMP trajectories may exhibit hysteretic behavior and how the rate of such cell-state transitions depends on the genetic/epigenetic background of recipient cells, as well as the dose and/or duration of EMP-inducing growth factors. Finally, we discuss the relationship between EMP and patient survival across many cancer types. We also present a next set of questions related to EMP that could benefit much from single-cell observations and pave the way to better tackle phenotypic switching and heterogeneity in clinic.
Collapse
Affiliation(s)
| | - Joel Markus
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sarthak Sahoo
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Wang EJY, Chen IH, Kuo BYT, Yu CC, Lai MT, Lin JT, Lin LYT, Chen CM, Hwang T, Sheu JJC. Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules 2022; 12:biom12121862. [PMID: 36551290 PMCID: PMC9775460 DOI: 10.3390/biom12121862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., β-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.
Collapse
Affiliation(s)
- Evan Ja-Yang Wang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - I-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 403301, Taiwan
| | - Jen-Tai Lin
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
| | - Leo Yen-Ting Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 7102)
| |
Collapse
|
11
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Tang S, Ling Z, Jiang J, Gu X, Leng Y, Wei C, Cheng H, Li X. Integrating the tumor-suppressive activity of Maspin with p53 in retuning the epithelial homeostasis: A working hypothesis and applicable prospects. Front Oncol 2022; 12:1037794. [PMID: 36523976 PMCID: PMC9745138 DOI: 10.3389/fonc.2022.1037794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 12/20/2024] Open
Abstract
Epithelial malignant transformation and tumorous development were believed to be closely associated with the loss of its microenvironment integrity and homeostasis. The tumor-suppressive molecules Maspin and p53 were demonstrated to play a crucial role in body epithelial and immune homeostasis. Downregulation of Maspin and mutation of p53 were frequently associated with malignant transformation and poor prognosis in various human cancers. In this review, we focused on summarizing the progress of the molecular network of Maspin in studying epithelial tumorous development and its response to clinic treatment and try to clarify the underlying antitumor mechanism. Notably, Maspin expression was reported to be transcriptionally activated by p53, and the transcriptional activity of p53 was demonstrated to be enhanced by its acetylation through inhibition of HDAC1. As an endogenous inhibitor of HDAC1, Maspin possibly potentiates the transcriptional activity of p53 by acetylating the p53 protein. Hereby, it could form a "self-propelling" antitumor mechanism. Thus, we summarized that, upon stimulation of cellular stress and by integrating with p53, the aroused Maspin played the epigenetic surveillant role to prevent the epithelial digressional process and retune the epithelial homeostasis, which is involved in activating host immune surveillance, regulating the inflammatory factors, and fine-tuning its associated cell signaling pathways. Consequentially, in a normal physiological condition, activation of the above "self-propelling" antitumor mechanism of Maspin and p53 could reduce cellular stress (e.g., chronic infection/inflammation, oxidative stress, transformation) effectively and achieve cancer prevention. Meanwhile, designing a strategy of mimicking Maspin's epigenetic regulation activity with integrating p53 tumor-suppressive activity could enhance the chemotherapy efficacy theoretically in a pathological condition of cancer.
Collapse
Affiliation(s)
- Sijie Tang
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Zhongli Ling
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Xiang Gu
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Yuzhong Leng
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Chaohui Wei
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Huiying Cheng
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Xiaohua Li
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| |
Collapse
|
13
|
Uncovering Novel Features of the Pc Locus in Horn Development from Gene-Edited Holstein Cattle by RNA-Sequencing Analysis. Int J Mol Sci 2022; 23:ijms232012060. [PMID: 36292916 PMCID: PMC9603690 DOI: 10.3390/ijms232012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
The Polled Celtic (Pc) mutation locus is a genetically simple single mutation that is the best choice for breeding polled cattle using gene editing. However, the mechanism of the Pc locus for regulating horn development is unclear, so we used gene editing, somatic cell nuclear transfer and embryo transfer to obtain polled Holstein fetal bovine (gestation time 90 days) with a homozygous Pc insertion (gene-edited Holstein fetal bovine, EH) and the wild-type 90 days Holstein fetal bovine (WH) as controls. The hematoxylin-eosin (HE) staining results showed that, compared to the WH, the EH horn buds had no white keratinized projections or vacuolated keratinocytes and no thick nerve bundles under the dermal tissue. Furthermore, DNA sequencing results showed that the Pc locus was homozygously inserted into the fetal bovine genome. A total of 791 differentially expressed genes were identified by transcriptome sequencing analysis. Enrichment analysis and protein interaction analysis results of differentially expressed genes showed that abundant gene changes after Pc insertion were associated with the adhesion molecule regulation, actin expression, cytoskeletal deformation and keratin expression and keratinization. It was also noted that the results contained several genes that had been reported to be associated with the development of horn traits, such as RXFP2 and TWIST1. This study identified these changes for the first time and summarized them. The results suggested that the Pc mutant locus may inhibit neural crest cell EMT generation and keratin expression, leading to failures in neural crest cell migration and keratinization of the horn bud tissue, regulating the production of the polled phenotype.
Collapse
|