1
|
Yeh D, Penaud S, Gaston-Bellegarde A, Scoriels L, Krebs MO, Piolino P. Impact of minimal self disorders on naturalistic episodic memory in first-episode psychosis and parallels in healthy individuals with schizotypal traits. Front Psychiatry 2024; 15:1469390. [PMID: 39605999 PMCID: PMC11598521 DOI: 10.3389/fpsyt.2024.1469390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background Self-disorders constitute a core feature of the schizophrenia spectrum, including early stages such as first-episode psychosis (FEP). These disorders impact the minimal Self, or bodily self-consciousness, which refers to the basic, pre-reflective sense of embodied experience. The minimal Self is intrinsically linked to episodic memory, which captures specific past experiences of the Self. However, research on this relationship in the schizophrenia spectrum remains scarce. This pilot study aimed to investigate how the minimal Self modulated episodic memory of naturalistic events in FEP, using immersive virtual reality. A secondary objective was to examine the relationships between sense of Self, embodiment, episodic memory, schizotypal personality traits in healthy participants (CTL), and psychopathology in FEP. Methods A full-body illusion was induced in 10 FEP and 35 matched CTL, using a first-person avatar, with synchronous or asynchronous visuomotor stimulation (strong or weak embodiment conditions, respectively). Following embodiment induction, participants navigated a virtual city and encountered naturalistic daily life events, which were incidentally encoded. Episodic memory of these events was assessed through a comprehensive recognition task (factual and contextual information, retrieval phenomenology). Sense of Self, schizotypal personality traits, and psychopathology were assessed via self-reported questionnaires or clinical assessments. Results Synchronous visuomotor stimulation successfully induced a stronger sense of embodiment in both FEP and CTL. The strong embodiment condition was associated with reduced perceived virtual space occupation by the body in FEP. Under strong embodiment, FEP performed significantly worse than CTL in contextual information recognition, but their ratings for retrieval phenomenology were comparable to CTL. Conversely, under weak embodiment, FEP performed similarly to CTL in contextual information recognition, but they rated retrieval phenomenology significantly lower. For CTL, we observed a slight, though non-significant, enhancement in recognition memory under strong compared to weak embodiment. Additionally, higher schizotypy in CTL correlated with a diminished sense of Self and poorer episodic memory. Conclusions Disturbances in the minimal Self in FEP are associated with episodic memory impairments. These findings emphasise the importance of targeting minimal Self-disorders in schizophrenia spectrum disorders, since episodic memory impairments may negatively affect patients' quality of life and psychosocial outcomes. Additionally, they support a fully dimensional model of schizotypy.
Collapse
Affiliation(s)
- Delphine Yeh
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, Boulogne-Billancourt, France
| | - Sylvain Penaud
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, Boulogne-Billancourt, France
| | | | - Linda Scoriels
- Université Paris Cité, Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant, CNRS, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Marie-Odile Krebs
- GHU Paris Psychiatrie et Neurosciences, Paris, France
- Université Paris Cité, INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Pascale Piolino
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, Boulogne-Billancourt, France
| |
Collapse
|
2
|
Beanato E, Moon HJ, Windel F, Vassiliadis P, Wessel MJ, Popa T, Pauline M, Neufeld E, De Falco E, Gauthier B, Steiner M, Blanke O, Hummel FC. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. SCIENCE ADVANCES 2024; 10:eado4103. [PMID: 39475597 PMCID: PMC11524170 DOI: 10.1126/sciadv.ado4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging. iTBS improved spatial navigation performance, correlated with hippocampal activity modulation, and decreased grid cell-like activity in EC. Collectively, these data provide the evidence that human HC-EC activity can be directly and noninvasively modulated leading to changes of spatial navigation behavior. These findings suggest promising perspectives for patients suffering from cognitive impairment such as following traumatic brain injury or dementia.
Collapse
Affiliation(s)
- Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Hyuk-June Moon
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Maximillian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Menoud Pauline
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- ZMT Zurich MedTech AG, Zurich, Switzerland
| | - Emanuela De Falco
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
3
|
Meyer NH, Gauthier B, Potheegadoo J, Boscheron J, Franc E, Lance F, Blanke O. Sense of Agency during Encoding Predicts Subjective Reliving. eNeuro 2024; 11:ENEURO.0256-24.2024. [PMID: 39317465 PMCID: PMC11613308 DOI: 10.1523/eneuro.0256-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Autonoetic consciousness (ANC), the ability to re-experience personal past events links episodic memory and self-consciousness by bridging awareness of oneself in a past event (i.e., during its encoding) with awareness of oneself in the present (i.e., during the reliving of a past event). Recent neuroscience research revealed a bodily form of self-consciousness, including the sense of agency (SoA) and the sense of body ownership (SoO) that are based on the integration of multisensory bodily inputs and motor signals. However, the relation between SoA and/or SoO with ANC is not known. Here, we used immersive virtual reality technology and motion tracking and investigated the potential association of SoA/SoO with ANC. For this, we exposed participants to different levels of visuomotor and perspectival congruency, known to modulate SoA and SoO, during the encoding of virtual scenes and collected ANC ratings 1 week after the encoding session. In a total of 74 healthy participants, we successfully induced systematic changes in SoA and SoO during encoding and found that ANC depended on the level of SoA experienced during encoding. Moreover, ANC was positively associated with SoA, but only for the scene encoded with preserved visuomotor and perspectival congruency, and such SoA-ANC coupling was absent for SoO and control questions. Collectively, these data provide behavioral evidence in a novel paradigm that links a key subjective component of bodily self-consciousness during encoding, SoA, to the subjective reliving of those encoded events from one's past, ANC.
Collapse
Affiliation(s)
- Nathalie Heidi Meyer
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva 1202, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva 1202, Switzerland
- Clinical Research Unit, Neuchâtel Hospital Network, Neuchâtel 2000, Switzerland
| | - Jevita Potheegadoo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva 1202, Switzerland
| | - Juliette Boscheron
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva 1202, Switzerland
| | - Elizabeth Franc
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva 1202, Switzerland
| | - Florian Lance
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva 1202, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva 1202, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, Geneva 1205, Switzerland
| |
Collapse
|
4
|
Meyer NH, Gauthier B, Stampacchia S, Boscheron J, Babo-Rebelo M, Potheegadoo J, Herbelin B, Lance F, Alvarez V, Franc E, Esposito F, Morais Lacerda M, Blanke O. Embodiment in episodic memory through premotor-hippocampal coupling. Commun Biol 2024; 7:1111. [PMID: 39256570 PMCID: PMC11387647 DOI: 10.1038/s42003-024-06757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Episodic memory (EM) allows us to remember and relive past events and experiences and has been linked to cortical-hippocampal reinstatement of encoding activity. While EM is fundamental to establish a sense of self across time, this claim and its link to the sense of agency (SoA), based on bodily signals, has not been tested experimentally. Using real-time sensorimotor stimulation, immersive virtual reality, and fMRI we manipulated the SoA and report stronger hippocampal reinstatement for scenes encoded under preserved SoA, reflecting recall performance in a recognition task. We link SoA to EM showing that hippocampal reinstatement is coupled with reinstatement in premotor cortex, a key SoA region. We extend these findings in a severe amnesic patient whose memory lacked the normal dependency on the SoA. Premotor-hippocampal coupling in EM describes how a key aspect of the bodily self at encoding is neurally reinstated during the retrieval of past episodes, enabling a sense of self across time.
Collapse
Affiliation(s)
- Nathalie Heidi Meyer
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Clinical Research Unit, Neuchâtel Hospital Network, 2000, Neuchâtel, Switzerland
| | - Sara Stampacchia
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Juliette Boscheron
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jevita Potheegadoo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Bruno Herbelin
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Florian Lance
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Vincent Alvarez
- Hopital du Valais, Avenue Grand Champsec 80, 1950, Sion, Switzerland
| | - Elizabeth Franc
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Fabienne Esposito
- Clinique Romande de Réadaptation, SUVA, Avenue Grand Champsec 90, 1950, Sion, Switzerland
| | - Marilia Morais Lacerda
- Clinique Romande de Réadaptation, SUVA, Avenue Grand Champsec 90, 1950, Sion, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Department of Clinical Neurosciences, University Hospital Geneva, Rue Micheli-du-Crest 24, 1205, Geneva, Switzerland.
| |
Collapse
|
5
|
Bin Khalid I, Reifenstein ET, Auer N, Kunz L, Kempter R. Quantitative modeling of the emergence of macroscopic grid-like representations. eLife 2024; 13:e85742. [PMID: 39212203 PMCID: PMC11364436 DOI: 10.7554/elife.85742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
When subjects navigate through spatial environments, grid cells exhibit firing fields that are arranged in a triangular grid pattern. Direct recordings of grid cells from the human brain are rare. Hence, functional magnetic resonance imaging (fMRI) studies proposed an indirect measure of entorhinal grid-cell activity, quantified as hexadirectional modulation of fMRI activity as a function of the subject's movement direction. However, it remains unclear how the activity of a population of grid cells may exhibit hexadirectional modulation. Here, we use numerical simulations and analytical calculations to suggest that this hexadirectional modulation is best explained by head-direction tuning aligned to the grid axes, whereas it is not clearly supported by a bias of grid cells toward a particular phase offset. Firing-rate adaptation can result in hexadirectional modulation, but the available cellular data is insufficient to clearly support or refute this option. The magnitude of hexadirectional modulation furthermore depends considerably on the subject's navigation pattern, indicating that future fMRI studies could be designed to test which hypothesis most likely accounts for the fMRI measure of grid cells. Our findings also underline the importance of quantifying the properties of human grid cells to further elucidate how hexadirectional modulations of fMRI activity may emerge.
Collapse
Affiliation(s)
- Ikhwan Bin Khalid
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Eric T Reifenstein
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Department of Mathematics and Computer Science, Freie Universität BerlinBerlinGermany
| | - Naomi Auer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Lukas Kunz
- Department of Epileptology, University Hospital BonnBonnGermany
| | - Richard Kempter
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| |
Collapse
|
6
|
Peters-Founshtein G, Dafni-Merom A, Monsa R, Arzy S. Evidence for grid-cell-like activity in the time domain. Neuropsychologia 2024; 198:108878. [PMID: 38574806 DOI: 10.1016/j.neuropsychologia.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The relation between the processing of space and time in the brain has been an enduring cross-disciplinary question. Grid cells have been recognized as a hallmark of the mammalian navigation system, with recent studies attesting to their involvement in the organization of conceptual knowledge in humans. To determine whether grid-cell-like representations support temporal processing, we asked subjects to mentally simulate changes in age and time-of-day, each constituting "trajectory" in an age-day space, while undergoing fMRI. We found that grid-cell-like representations supported trajecting across this age-day space. Furthermore, brain regions concurrently coding past-to-future orientation positively modulated the magnitude of grid-cell-like representation in the left entorhinal cortex. Finally, our findings suggest that temporal processing may be supported by spatially modulated systems, and that innate regularities of abstract domains may interface and alter grid-cell-like representations, similarly to spatial geometry.
Collapse
Affiliation(s)
- Gregory Peters-Founshtein
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Nuclear Medicine, Sheba Medical Center, Ramat-Gan, Israel.
| | - Amnon Dafni-Merom
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Monsa
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Arzy
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Sigismondi F, Xu Y, Silvestri M, Bottini R. Altered grid-like coding in early blind people. Nat Commun 2024; 15:3476. [PMID: 38658530 PMCID: PMC11043432 DOI: 10.1038/s41467-024-47747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Cognitive maps in the hippocampal-entorhinal system are central for the representation of both spatial and non-spatial relationships. Although this system, especially in humans, heavily relies on vision, the role of visual experience in shaping the development of cognitive maps remains largely unknown. Here, we test sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network, constituted by frontal, medial temporal, and parietal cortices, is reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlight crucial differences between groups. A 60° rotational symmetry, characteristic of a hexagonal grid-like coding, emerges in the entorhinal cortex of sighted but not blind people, who instead show a 90° (4-fold) symmetry, indicative of a square grid. Moreover, higher parietal cortex activity during navigation in blind people correlates with the magnitude of 4-fold symmetry. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.
Collapse
Affiliation(s)
| | - Yangwen Xu
- Center for Mind/Brain Sciences, University of Trento, 38122, Trento, Italy
- Max Planck Institute for Human Cognitive and Brain Sciences, D-04303, Leipzig, Germany
| | - Mattia Silvestri
- Center for Mind/Brain Sciences, University of Trento, 38122, Trento, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences, University of Trento, 38122, Trento, Italy.
| |
Collapse
|
8
|
Li M, Haihambo N, Bylemans T, Ma Q, Heleven E, Baeken C, Baetens K, Deroost N, Van Overwalle F. Create your own path: social cerebellum in sequence-based self-guided navigation. Soc Cogn Affect Neurosci 2024; 19:nsae015. [PMID: 38554289 PMCID: PMC10981473 DOI: 10.1093/scan/nsae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 04/01/2024] Open
Abstract
Spatial trajectory planning and execution in a social context play a vital role in our daily lives. To study this process, participants completed a goal-directed task involving either observing a sequence of preferred goals and self-planning a trajectory (Self Sequencing) or observing and reproducing the entire trajectory taken by others (Other Sequencing). The results indicated that in the observation phase, witnessing entire trajectories created by others (Other Sequencing) recruited cerebellar mentalizing areas (Crus 2 and 1) and cortical mentalizing areas in the precuneus, ventral and dorsal medial prefrontal cortex and temporo-parietal junction more than merely observing several goals (Self Sequencing). In the production phase, generating a trajectory by oneself (Self Sequencing) activated Crus 1 more than merely reproducing the observed trajectories from others (Other Sequencing). Additionally, self-guided observation and planning (Self Sequencing) activated the cerebellar lobules IV and VIII more than Other Sequencing. Control conditions involving non-social objects and non-sequential conditions where the trajectory did not have to be (re)produced revealed no differences with the main Self and Other Sequencing conditions, suggesting limited social and sequential specificity. These findings provide insights into the neural mechanisms underlying trajectory observation and production by the self or others during social navigation.
Collapse
Affiliation(s)
- Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Tom Bylemans
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Qianying Ma
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing 100083, China
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, the Netherlands
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
9
|
Moon HJ, Albert L, De Falco E, Tasu C, Gauthier B, Park HD, Blanke O. Changes in spatial self-consciousness elicit grid cell-like representation in the entorhinal cortex. Proc Natl Acad Sci U S A 2024; 121:e2315758121. [PMID: 38489383 PMCID: PMC10962966 DOI: 10.1073/pnas.2315758121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Grid cells in the entorhinal cortex (EC) encode an individual's location in space, integrating both environmental and multisensory bodily cues. Notably, body-derived signals are also primary signals for the sense of self. While studies have demonstrated that continuous application of visuo-tactile bodily stimuli can induce perceptual shifts in self-location, it remains unexplored whether these illusory changes suffice to trigger grid cell-like representation (GCLR) within the EC, and how this compares to GCLR during conventional virtual navigation. To address this, we systematically induced illusory drifts in self-location toward controlled directions using visuo-tactile bodily stimulation, while maintaining the subjects' visual viewpoint fixed (absent conventional virtual navigation). Subsequently, we evaluated the corresponding GCLR in the EC through functional MRI analysis. Our results reveal that illusory changes in perceived self-location (independent of changes in environmental navigation cues) can indeed evoke entorhinal GCLR, correlating in strength with the magnitude of perceived self-location, and characterized by similar grid orientation as during conventional virtual navigation in the same virtual room. These data demonstrate that the same grid-like representation is recruited when navigating based on environmental, mainly visual cues, or when experiencing illusory forward drifts in self-location, driven by perceptual multisensory bodily cues.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
| | - Louis Albert
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
| | - Emanuela De Falco
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
| | - Corentin Tasu
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
| | - Baptiste Gauthier
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Clinical Research Unit, Cantonal Hospital, Neuchâtel2000, Switzerland
| | - Hyeong-Dong Park
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, Geneva1205, Switzerland
| |
Collapse
|
10
|
Crucianelli L, Reader AT, Ehrsson HH. Subcortical contributions to the sense of body ownership. Brain 2024; 147:390-405. [PMID: 37847057 PMCID: PMC10834261 DOI: 10.1093/brain/awad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
The sense of body ownership (i.e. the feeling that our body or its parts belong to us) plays a key role in bodily self-consciousness and is believed to stem from multisensory integration. Experimental paradigms such as the rubber hand illusion have been developed to allow the controlled manipulation of body ownership in laboratory settings, providing effective tools for investigating malleability in the sense of body ownership and the boundaries that distinguish self from other. Neuroimaging studies of body ownership converge on the involvement of several cortical regions, including the premotor cortex and posterior parietal cortex. However, relatively less attention has been paid to subcortical structures that may also contribute to body ownership perception, such as the cerebellum and putamen. Here, on the basis of neuroimaging and neuropsychological observations, we provide an overview of relevant subcortical regions and consider their potential role in generating and maintaining a sense of ownership over the body. We also suggest novel avenues for future research targeting the role of subcortical regions in making sense of the body as our own.
Collapse
Affiliation(s)
- Laura Crucianelli
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4DQ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Arran T Reader
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| |
Collapse
|
11
|
Chen D, Axmacher N, Wang L. Grid codes underlie multiple cognitive maps in the human brain. Prog Neurobiol 2024; 233:102569. [PMID: 38232782 DOI: 10.1016/j.pneurobio.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes-empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
12
|
Palermo L, Boccia M. The Body in Neurosciences: Representation, Perception and Space Processing. Brain Sci 2023; 13:1708. [PMID: 38137156 PMCID: PMC10741805 DOI: 10.3390/brainsci13121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
The Special Issue "The Body in Neurosciences: Representation, Perception and Space Processing" deals with the understanding of body processing in terms of the multisensorial perception of bodily related information, interoception, and mental representation, as well as its relationship with the peripersonal, interpersonal, and extrapersonal spaces, integrating findings from normal and pathological functioning [...].
Collapse
Affiliation(s)
- Liana Palermo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Viale Europa—Loc. Germaneto, 88100 Catanzaro, Italy
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, via dei Marsi 78, 00185 Rome, Italy;
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia Foundation, via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
13
|
Moon HJ, Wu HP, De Falco E, Blanke O. Physical Body Orientation Impacts Virtual Navigation Experience and Performance. eNeuro 2023; 10:ENEURO.0218-23.2023. [PMID: 37932043 PMCID: PMC10683533 DOI: 10.1523/eneuro.0218-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Most human navigation studies in MRI rely on virtual navigation. However, the necessary supine position in MRI makes it fundamentally different from daily ecological navigation. Nonetheless, until now, no study has assessed whether differences in physical body orientation (BO) affect participants' experienced BO during virtual navigation. Here, combining an immersive virtual reality navigation task with subjective BO measures and implicit behavioral measures, we demonstrate that physical BO (either standing or supine) modulates experienced BO. Also, we show that standing upright BO is preferred during spatial navigation: participants were more likely to experience a standing BO and were better at spatial navigation when standing upright. Importantly, we report that showing a supine virtual agent reduces the conflict between the preferred BO and physical supine BO. Our study provides critical, but missing, information regarding experienced BO during virtual navigation, which should be considered cautiously when designing navigation studies, especially in MRI.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Hsin-Ping Wu
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Emanuela De Falco
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Stephens DC, Crabtree A, Beasley HK, Garza-Lopez E, Neikirk K, Mungai M, Vang L, Vue Z, Vue N, Marshall AG, Turner K, Shao J, Murray S, Gaddy JA, Wanjalla C, Davis J, Damo S, Hinton AO. Optimizing In Situ Proximity Ligation Assays for Mitochondria, ER, or MERC Markers in Skeletal Muscle Tissue and Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541599. [PMID: 37292700 PMCID: PMC10245739 DOI: 10.1101/2023.05.20.541599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proximity ligation assays (PLA) use specific antibodies to detect endogenous protein-protein interactions. PLA is a highly useful biochemical technique that allows two proteins within close proximity to be visualized with fluorescent probes amplified by PCR. While this technique has gained prominence, the use of PLA in mouse skeletal muscle (SkM) is novel. In this article, we discuss how the PLA method can be used in SkM to study the protein-protein interactions within mitochondria-endoplasmic reticulum contact sites (MERCs).
Collapse
Affiliation(s)
- Dominique C. Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Neng Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kyrin Turner
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37232, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sandra Murray
- Department of Cell Biology, College of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232 USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, 37212 USA
| | - Celestine Wanjalla
- Vanderbilt University Medical Center: Department of Medicine, Division of Infectious Disease, Nashville, TN, USA
| | - Jamaine Davis
- Department of Biochemistry and Cancer Biology. Meharry Medical College, Nashville, TN, 37208, USA
| | - Steven Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37232, USA
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
15
|
Perspective: Present and Future of Virtual Reality for Neurological Disorders. Brain Sci 2022; 12:brainsci12121692. [PMID: 36552152 PMCID: PMC9775006 DOI: 10.3390/brainsci12121692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Since the emergence of Virtual Reality technology, it has been adopted in the field of neurology. While Virtual Reality has contributed to various rehabilitation approaches, its potential advantages, especially in diagnosis, have not yet been fully utilized. Moreover, new tides of the Metaverse are approaching rapidly, which will again boost public and research interest and the importance of immersive Virtual Reality technology. Nevertheless, accessibility to such technology for people with neurological disorders has been critically underexplored. Through this perspective paper, we will briefly look over the current state of the technology in neurological studies and then propose future research directions, which hopefully facilitate beneficial Virtual Reality studies on a wider range of topics in neurology.
Collapse
|
16
|
Does path integration contribute to human navigation in large-scale space? Psychon Bull Rev 2022:10.3758/s13423-022-02216-8. [DOI: 10.3758/s13423-022-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
|