1
|
Sun D, Lin S, Wang Y, Cui J, Tuo Z, Lin Z, Liang Y, Ren L. Study of Self-Locking Structure Based on Surface Microstructure of Dung Beetle Leg Joint. Biomimetics (Basel) 2024; 9:622. [PMID: 39451828 PMCID: PMC11505528 DOI: 10.3390/biomimetics9100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Dung beetle leg joints exhibit a remarkable capacity to support substantial loads, which is a capability significantly influenced by their surface microstructure. The exploration of biomimetic designs inspired by the surface microstructure of these joints holds potential for the development of efficient self-locking structures. However, there is a notable absence of research focused on the surface microstructure of dung beetle leg joints. In this study, we investigated the structural characteristics of the surface microstructures present in dung beetle leg joints, identifying the presence of fish-scale-like, brush-like, and spike-like microstructures on the tibia and femur. Utilizing these surface microstructural characteristics, we designed a self-locking structure that successfully demonstrated functionality in both the rotational direction of the structure and self-locking in the reverse direction. At a temperature of 20 °C, the biomimetic closure featuring a self-locking mechanism was capable of generating a self-locking force of 18 N. The bionic intelligent joint, characterized by its unique surface microstructure, presents significant potential applications in aerospace and various engineering domains, particularly as a critical component in folding mechanisms. This research offers innovative design concepts for folding mechanisms, such as those utilized in satellite solar panels and solar panels for asteroid probes.
Collapse
Affiliation(s)
- Dexin Sun
- College of Mechatronics, Changchun Polytechnic, Changchun 130033, China;
| | - Sen Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Yubo Wang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
| | - Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
| | - Zhiwei Tuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
| |
Collapse
|
2
|
Cui J, Wang Y, Lin S, Tuo Z, Lin Z, Liang Y, Ren L. Bionic Design of High-Performance Joints: Differences in Failure Mechanisms Caused by the Different Structures of Beetle Femur-Tibial Joints. Biomimetics (Basel) 2024; 9:605. [PMID: 39451812 PMCID: PMC11505458 DOI: 10.3390/biomimetics9100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Beetle femur-tibial joints can bear large loads, and the joint structure plays a crucial role. Differences in living habits will lead to differences in femur-tibial joint structure, resulting in different mechanical properties. Here, we determined the structural characteristics of the femur-tibial joints of three species of beetles with different living habits. The tibia of Scarabaeidae Protaetia brevitarsis and Cetoniidae Torynorrhina fulvopilosa slide through cashew-shaped bumps on both sides of the femur in a guide rail consisting of a ring and a cone bump. The femur-tibial joint of Buprestidae Chrysodema radians is composed of a conical convex tibia and a circular concave femur. A bionic structure design was developed out based on the characteristics of the structure of the femur-tibial joints. Differences in the failure of different joint models were obtained through experiments and finite element analysis. The experimental results show that although the spherical connection model can bear low loads, it can maintain partial integrity of the structure and avoid complete failure. The cuboid connection model shows a higher load-bearing capacity, but its failure mode is irreversible deformation. As key parts of rotatable mechanisms, the bionic models have the potential for wide application in the high-load engineering field.
Collapse
Affiliation(s)
- Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
| | - Yubo Wang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
| | - Sen Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Zhiwei Tuo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
| |
Collapse
|
3
|
Tuo Z, Shi Y, Sun X, Cui J, Yang K, Liang Y, Liu C, Lin Z, Han Z, Ren L. Study of the influence of macro-structure and micro-structure on the mechanical properties of stag beetle upper jaw. Acta Biomater 2024; 186:342-353. [PMID: 39097125 DOI: 10.1016/j.actbio.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Macrostructural control of stress distribution and microstructural influence on crack propagation is one of the strategies for obtaining high mechanical properties in stag beetle upper jaws. The maximum bending fracture force of the stag beetle upper jaw is approximately 154, 000 times the weight of the upper jaw. Here, we explore the macro and micro-structural characteristics of two stag beetle upper jaws and reveal the resulting differences in mechanical properties and enhancement mechanisms. At the macroscopic level, the elliptic and triangular cross-sections of the upper jaw of the two species of stag beetles have significant effects on the formation of cracks. The crack generated by the upper jaws with a triangular section grows slowly and deflects easily. At the microscopic level, the upper jaw of the two species is a chitin cross-layered structure, but the difference between the two adjacent fiber layers at 45° and 50° leads to different deflection paths of the cracks on the exoskeleton. The mechanical properties of the upper jaw of the two species of stag beetle were significantly different due to the interaction of macro-structure and micro-structure. In addition, a series of bionic samples with different cross-section geometries and different fiber cross angles were designed, and mechanical tests were carried out according to the macro-structure and micro-structure characteristics of the stag beetle upper jaw. The effects of cross-section geometry and fiber cross angle on the mechanical properties of bionic samples are compared and analyzed. This study provides new ideas for designing and optimizing highly loaded components in engineering. STATEMENT OF SIGNIFICANCE: The upper jaw of the stag beetle is composed of a complex arrangement of chitin and protein fibers, providing both rigidity and flexibility. This structure is designed to withstand various mechanical stresses, including impacts and bending forces, encountered during its burrowing activities and interactions with its environment. The study of the upper jaw of the stag beetle can provide an efficient structural design for engineering components that are subjected to high loads. Understanding the relationship between structure and mechanical properties in the stag beetle upper jaw holds significant implications for biomimetic design and engineering.
Collapse
Affiliation(s)
- Zhiwei Tuo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Yu Shi
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Xianyan Sun
- Department of General Practice, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Kaisheng Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China.
| | - Changyi Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
4
|
Tuo Z, Yang K, Ma S, Cui J, Shi Y, Zhao H, Liang Y, Liu C, Lin Z, Han Z, Ren L. Multi-Level Structural Enhancement Mechanism of the Excellent Mechanical Properties of Dung Beetle Leg Joint. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311588. [PMID: 38497502 DOI: 10.1002/smll.202311588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Indexed: 03/19/2024]
Abstract
The multi-level structure is a strategy to enhance the mechanical properties of dung beetle leg joints. Under external loads, the microstructure facilitates energy dissipation and prevents crack extension. The macrostructure aids in transferring the load to more reliable parts. The connection established by the two hemispheres is present in the dung beetle leg joint. The micron-layered and nanoscale crystal structures further constitute the leg joint with excellent mechanical properties. The maximum compression fracture force is ≈101000 times the weight of the leg. Here, the structural design within the dung beetle leg joints and reveal the resulting mechanical response and enhancement mechanisms is determined. A series of beetle leg joints where the macrostructure and microstructure of the dung beetle leg provide mechanical strength at critical strains while avoiding catastrophic failure by transferring the load from the joint to the exoskeleton of the femur is highlighted. Nanocrystalline structures and fiber layers contribute to crack propagation of the exoskeleton. Based on this, the bionic joint with multi-level structures using resin and conducted a series of tests to verify their effectiveness is prepared. This study provides a new idea for designing and optimizing high-load joints in engineering.
Collapse
Affiliation(s)
- Zhiwei Tuo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Kaisheng Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Suqian Ma
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Yu Shi
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Changchun, 130025, China
| | - Changyi Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
5
|
Klunk CL, Heethoff M, Hammel JU, Gorb SN, Krings W. Mechanical and elemental characterization of ant mandibles: consequences for bite mechanics. Interface Focus 2024; 14:20230056. [PMID: 38618235 PMCID: PMC11008963 DOI: 10.1098/rsfs.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.
Collapse
Affiliation(s)
- Cristian L. Klunk
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Michael Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| |
Collapse
|