1
|
Wang F, Zhao Q, Li S, Sun R, Zang Z, Xiong AS, Seck EHM, Ye Y, Zhang J. Genetic mechanisms, biological function, and biotechnological advance in sorghum tannins research. Biotechnol Adv 2025; 81:108573. [PMID: 40169114 DOI: 10.1016/j.biotechadv.2025.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Sorghum (Sorghum bicolor) holds a unique position in the human diet and serves as a stable food source in many developing countries especially in African and south Asian regions. Tannins, the primary secondary metabolites in sorghum, are pivotal in determining its characteristic bitter taste. Beyond their influence on flavor, tannins play a vital role in sorghum's resistance to biotic and abiotic stresses and serve as key indicators of grain quality. The concentration of tannins significantly affects the potential for diverse applications of sorghum. This review provides a comprehensive analysis of sorghum tannins, focusing on their genetic basis, biological activities, and biosynthesis mechanisms. It highlights the relationship between tannin levels and grain color and delves into the underlying biogenetic pathways. Furthermore, the potential of functional genomics and biotechnological approaches in precisely controlling tannin levels for sorghum breeding is discussed. This study aims to offer valuable insights and perspectives for advancing both the scientific understanding and practical applications of sorghum tannins.
Collapse
Affiliation(s)
- Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Qian Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Shuyao Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Ruidong Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Ai-Sheng Xiong
- Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - El Hadji Moussa Seck
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Yuxin Ye
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
2
|
Zhang S, Li C, Cui B, Kou W, Feng P, Wang X. TCP23-WRKY15 module negatively regulates lignin deposition and xylem development of wood formation in Populus. Int J Biol Macromol 2025; 306:141656. [PMID: 40032095 DOI: 10.1016/j.ijbiomac.2025.141656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Secondary wall, a critical component of wood, is influenced by multiple factors during its formation. The TCP family encodes plant-specific transcription factors (TFs) that play key roles in multiple aspects of plant development. In this study, we identified all TCP TFs in five poplar species and analyzed their evolutionary relationships, gene structures, tissue-specific expression patterns, and potential interactions with microRNAs. Additionally, we screened for TCP proteins associated with secondary wall development that are independent of miRNA regulation. Three candidate TFs were identified, with TCP23 showing high conservation across poplar species and the highest expression levels in the xylem of Populus trichocarpa and Populus wilsonii. The overexpression of TCP23 in poplar inhibited the expression of MYB TFs and structural genes involved in xylem biosynthesis, thereby reducing the lignin content within the stems. By contrast, CRISPR/Cas9-mediated knockout of TCP23 resulted in the opposite effect. Furthermore, we successfully identified WRKY15 as an interaction partner of TCP23 via a yeast two-hybrid library and demonstrated that TCP23 negatively regulates lignin synthesis and xylem development by enhancing the inhibitory function of WRKY15. Our study provides new insights into the transcriptional regulatory mechanisms underlying secondary wall formation.
Collapse
Affiliation(s)
- Shengkui Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Baihui Cui
- School of Architecture and Design, Chongqing College of Humanities, Science and Technology, Chongqing 401524, China
| | - Wenhua Kou
- School of Architecture and Design, Chongqing College of Humanities, Science and Technology, Chongqing 401524, China
| | - Ping Feng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xia Wang
- School of Architecture and Design, Chongqing College of Humanities, Science and Technology, Chongqing 401524, China.
| |
Collapse
|
3
|
Gao W, Wang S, Jiang T, Hu H, Gao R, Zhou M, Wang G. Chromosome-scale and haplotype-resolved genome assembly of Populus trichocarpa. HORTICULTURE RESEARCH 2025; 12:uhaf012. [PMID: 40093378 PMCID: PMC11908830 DOI: 10.1093/hr/uhaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
Populus trichocarpa, a pivotal model organism for woody transgenic research, not only garners substantial scientific interest but plays an integral role in forestry economics. Previous genomic assemblies of P. trichocarpa predominantly treated its heterozygous genome as homozygous, thereby neglecting crucial haplotypic diversity. Leveraging the high-fidelity (HiFi) sequencing capabilities of PacBio sequencing and the chromosome conformation capture insights provided by Illumina's Hi-C technique, this study is the first to achieve a near telomere-to-telomere assembly of both paternal and maternal haplotypes in P. trichocarpa. Comparative genomic analysis between these haplotypes has uncovered several allelic variants and pathways critical for trait determination through allele-specific expression. Furthermore, utilizing RNA-seq data from multiple tissues, this investigation has detailed the tissue-specific expression patterns of the leucine-rich repeat gene family, which are essential in mediating plant signal transduction and developmental regulation. Our results not only illuminate the functional genomics landscape of P. trichocarpa but also provide invaluable theoretical underpinnings for the genetic improvement of woody plants and a robust framework for exploring genetic variability and allelic expression disparities in arboreal species.
Collapse
Affiliation(s)
- Wentao Gao
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Sui Wang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Tao Jiang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Heng Hu
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Runtian Gao
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Murong Zhou
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| |
Collapse
|
4
|
Zhang H, Yin T. Identifying hub genes and key functional modules in leaf tissue of Populus species based on WGCNA. Genetica 2024; 153:5. [PMID: 39601984 DOI: 10.1007/s10709-024-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
As one of the most important parts of plants, the genetic mechanisms of photosynthesis or the response of leaf to a single abiotic and biotic stress have been well studied. However, few researches have involved in the integration of data analysis from system level in leaf tissue under multiple abiotic stresses by utilizing biological networks. In this study, the weighted gene co-expression network analysis (WGCNA) strategy was used to integrate multiple data in leaf tissue of Populus species under different sample treatments. The gene co-expression networks were constructed and functional modules were identified by selecting the suitable soft threshold power β in the procedure of WGCNA. The identified hub genes and gene modules were annotated by agriGO, NetAffx Analysis Center, The Plant Genome Integrative Explorer (PlantGenIE) and other annotation tools. The annotation results have displayed that the highly correlated modules and hub genes are involved in the important biological processes or pathways related to module traits. The efficiency of the WGCNA strategy can generate comprehensive understanding of gene module-traits associations in leaf tissue, which will provide novel insight into the genetic mechanism of Populus species.
Collapse
Affiliation(s)
- Huanping Zhang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Luo J, Wang Y, Li Z, Wang Z, Cao X, Wang N. Haplotype-resolved genome assembly of poplar line NL895 provides a valuable tree genomic resource. FORESTRY RESEARCH 2024; 4:e015. [PMID: 39524422 PMCID: PMC11524272 DOI: 10.48130/forres-0024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 04/07/2024] [Indexed: 11/16/2024]
Abstract
Poplar line NL895 can potentially become a model plant for poplar study as it is a widely cultivated elite line. However, the lack of genome resources hindered the use of NL895 as the major plant material in poplar. In this study, we provided a high-quality genome assembly for poplar line NL895 with PacBio single molecule real-time (SMRT) sequencing and High-throughput chromosome conformation capture (Hi-C) technology. The raw assembly of NL895 for the diploid genome included 606 contigs with a total size of ~815 Mb, and the monoploid genome included 246 contigs with a total size of ~412 Mb. The haplotype-resolved chromosomes in the diploid genomes were also generated. All the monoploid, diploid, and haplotype-resolved genomes showed more than 97% completeness and they can largely improve the mapping efficiency in RNA-Seq analysis. By comprehensively comparing the two haplotype genomes we found the heterozygosity of NL895 is much higher than other poplar lines. We also found that NL895 harbors more genomic variants and more gene diversity. The haplotype-specific genes showed higher variable gene expression patterns. These characters would be attributed to the high heterosis of poplar line NL895. The allele-specific expression (ASE) was also investigated and lots of alleles showed biased expressions in different tissues or environmental conditions. Taken together, the genome sequence for NL895 is a valuable tree genomic resource and it would greatly facilitate studies in poplar.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihui Li
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziwei Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212013, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Sericultural Research Institute, Zhenjiang 212013, Jiangsu, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Mahajan S, Chakraborty A, Bisht MS, Sil T, Sharma VK. Genome sequencing and functional analysis of a multipurpose medicinal herb Tinospora cordifolia (Giloy). Sci Rep 2024; 14:2799. [PMID: 38307917 PMCID: PMC10837142 DOI: 10.1038/s41598-024-53176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.
Collapse
Affiliation(s)
- Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Manohar S Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Titas Sil
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
7
|
Tao Y, Li C, Liu Y, Xu C, Okabe S, Matsushita N, Lian C. Identification of microRNAs involved in ectomycorrhizal formation in Populus tomentosa. TREE PHYSIOLOGY 2023; 43:2012-2030. [PMID: 37777191 DOI: 10.1093/treephys/tpad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/17/2023] [Indexed: 10/02/2023]
Abstract
The majority of woody plants are able to form ectomycorrhizal (ECM) symbioses with fungi. During symbiotic development, plants undergo a complex re-programming process involving a series of physiological and morphological changes. MicroRNAs (miRNAs) are important components of the regulatory network underlying symbiotic development. To elucidate the mechanisms of miRNAs and miRNA-mediated mRNA cleavage during symbiotic development, we conducted high-throughput sequencing of small RNAs and degradome tags from roots of Populus tomentosa inoculated with Cenococcum geophilum. This process led to the annotation of 51 differentially expressed miRNAs between non-mycorrhizal and mycorrhizal roots of P. tomentosa, including 13 novel miRNAs. Increased or decreased accumulation of several novel and conserved miRNAs in ECM roots, including miR162, miR164, miR319, miR396, miR397, miR398, novel-miR44 and novel-miR47, suggests essential roles for these miRNAs in ECM formation. The degradome analysis identified root transcripts as miRNA-mediated mRNA cleavage targets, which was confirmed using real-time quantitative PCR. Several of the identified miRNAs and corresponding targets are involved in arbuscular mycorrhizal symbioses. In summary, increased or decreased accumulation of specific miRNAs and miRNA-mediated cleavage of symbiosis-related genes indicate that miRNAs play important roles in the regulatory network underlying symbiotic development.
Collapse
Affiliation(s)
- Yuanxun Tao
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Chaofeng Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Maize Research Institute, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Ying Liu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Shin Okabe
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| |
Collapse
|
8
|
Mahajan S, Bisht MS, Chakraborty A, Sharma VK. Genome of Phyllanthus emblica: the medicinal plant Amla with super antioxidant properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1210078. [PMID: 37727852 PMCID: PMC10505619 DOI: 10.3389/fpls.2023.1210078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Phyllanthus emblica or Indian gooseberry, commonly known as amla, is an important medicinal horticultural plant used in traditional and modern medicines. It bears stone fruits with immense antioxidant properties due to being one of the richest natural sources of vitamin C and numerous flavonoids. This study presents the first genome sequencing of this species performed using 10x Genomics and Oxford Nanopore Technology. The draft genome assembly was 519 Mbp in size and consisted of 4,384 contigs, N50 of 597 Kbp, 98.4% BUSCO score, and 37,858 coding sequences. This study also reports the genome-wide phylogeny of this species with 26 other plant species that resolved the phylogenetic position of P. emblica. The presence of three ascorbate biosynthesis pathways including L-galactose, galacturonate, and myo-inositol pathways was confirmed in this genome. A comprehensive comparative evolutionary genomic analysis including gene family expansion/contraction and identification of multiple signatures of adaptive evolution provided evolutionary insights into ascorbate and flavonoid biosynthesis pathways and stone fruit formation through lignin biosynthesis. The availability of this genome will be beneficial for its horticultural, medicinal, dietary, and cosmetic applications and will also help in comparative genomics analysis studies.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|