1
|
Khoramipour K, Rajizadeh MA, Khaksari M, Aminzadeh M, Crespo-Escobar P, Santos-Lozano A, Arjmand M. Effects of high-intensity interval training on metabolic impairments in liver tissue of rats with type 2 diabetes: a metabolomics-based approach. J Physiol Biochem 2025:10.1007/s13105-025-01085-8. [PMID: 40377860 DOI: 10.1007/s13105-025-01085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Our aim was to study the metabolic effects of eight weeks of high-intensity interval training (HIIT) on the liver of rats with type 2 diabetes (T2D) using untargeted metabolomics. Twenty male Wistar rats, were divided into four groups (n = 5 per group): control (CTL), type 2 diabetes (DB), HIIT (EX), and type 2 diabetes + HIIT (DTX). A two months of a high-fat diet followed by a single dose of streptozotocin (35 mg/kg body weight) was used to induce T2D. Animals in the EX and DTX groups were trained for eight weeks (5 times per week, 4-10 running intervals at 80-100% of their maximum velocity). Metabolomic data were collected using proton nuclear magnetic resonance (¹H-NMR) to assess metabolic changes in the liver after training. Data were then pre-processed using ProMetab (MATLAB) for baseline correction, normalisation and binning. Fasting blood glucose (FBG) levels were analysed using a repeated-measures mixed ANOVA [i.e., time as the within-subject factor (Baseline - Month 0, Post-induction - Month 2, and Post-intervention - Month 4) and gruop (CTL, DB, HIIT, DTX) as the between-subject factor]. A one-way ANOVA with Tukey's post hoc test (p < 0.05) was applied to assess differences in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). Multivariate analysis - using sparse partial least squares discriminant analysis (sPLS-DA) - was performed to identify key metabolites, followed by pathway analysis (MetaboAnalyst) to determine significantly affected metabolic pathways. DB group showed higher HOMA-IR than CTL and DTX groups (p < 0.05). Furthermore, distinct clustering patterns was shown for metabolites by multivariate analysis. Key altered metabolic pathways included valine, leucine, and isoleucine biosynthesis; glutathione metabolism; pantothenate and coenzyme A biosynthesis; fructose and mannose metabolism; glycine, serine, and threonine metabolism; cysteine and methionine metabolism; arginine biosynthesis; tyrosine metabolism; histidine metabolism; beta-alanine metabolism; propanoate metabolism; glycolysis/gluconeogenesis; phenylalanine, tyrosine, and tryptophan biosynthesis; arginine and proline metabolism; and thiamine metabolism. These results suggest that eight weeks of HIIT may reverse metabolic changes induced by T2D in the rat liver, potentially contributing to reduced FBG and HOMA-IR levels. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, 47012, Spain
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansour Aminzadeh
- Metabolomics Lab, Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, 47012, Spain
- Nutrition and Obesity Unit, Hospital Recoletas Campo Grande, Valladolid, 47007, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, 47012, Spain
| | - Mohammad Arjmand
- Metabolomics Lab, Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Metz S, Belanich JR, Claussnitzer M, Kilpeläinen TO. Variant-to-function approaches for adipose tissue: Insights into cardiometabolic disorders. CELL GENOMICS 2025; 5:100844. [PMID: 40185091 DOI: 10.1016/j.xgen.2025.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic disorders. However, the functional interpretation of these loci remains a daunting challenge. This is particularly true for adipose tissue, a critical organ in systemic metabolism and the pathogenesis of various cardiometabolic diseases. We discuss how variant-to-function (V2F) approaches are used to elucidate the mechanisms by which GWAS loci increase the risk of cardiometabolic disorders by directly influencing adipose tissue. We outline GWAS traits most likely to harbor adipose-related variants and summarize tools to pinpoint the putative causal variants, genes, and cell types for the associated loci. We explain how large-scale perturbation experiments, coupled with imaging and multi-omics, can be used to screen variants' effects on cellular phenotypes and how these phenotypes can be tied to physiological mechanisms. Lastly, we discuss the challenges and opportunities that lie ahead for V2F research and propose a roadmap for future studies.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jonathan Robert Belanich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Endocrine Division, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02142, USA
| | - Tuomas Oskari Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Johnson T, Su J, Andres J, Henning A, Ren J. Sex Differences in Fat Distribution and Muscle Fat Infiltration in the Lower Extremity: A Retrospective Diverse-Ethnicity 7T MRI Study in a Research Institute Setting in the USA. Diagnostics (Basel) 2024; 14:2260. [PMID: 39451583 PMCID: PMC11506611 DOI: 10.3390/diagnostics14202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Fat infiltration in skeletal muscle is related to declining muscle strength, whereas excess subcutaneous fat is implicated in the development of metabolic diseases. Methods: Using multi-slice axial T2-weighted (T2w) MR images, this retrospective study characterized muscle fat infiltration (MFI) and fat distribution in the lower extremity of 107 subjects (64M/43F, age 11-79 years) with diverse ethnicities (including White, Black, Latino, and Asian subjects). Results: MRI data analysis shows that MFI, evaluated by the relative intensities of the pixel histogram profile in the calf muscle, tends to increase with both age and BMI. However, statistical significance was found only for the age correlation in women (p < 0.002), and the BMI correlation in men (p = 0.04). Sex disparities were also seen in the fat distribution, which was assessed according to subcutaneous fat thickness (SFT) and the fibula bone marrow cross-sectional area (BMA). SFT tends to decrease with age in men (p < 0.01), whereas SFT tends to increase with BMI only in women (p < 0.01). In contrast, BMA tends to increase with age in women (p < 0.01) and with BMI in men (p = 0.04). Additionally, MFI is positively correlated with BMA but not with SFT, suggesting that compromised bone structure may contribute to fat infiltration in the surrounding skeletal muscle. Conclusions: The findings of this study highlight a sex factor affecting MFI and fat distribution, which may offer valuable insights into effective strategies to prevent and treat MFI in women versus men.
Collapse
Affiliation(s)
- Talon Johnson
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Mathematics, University of Arlington, Arlington, TX 76019, USA;
| | - Jianzhong Su
- Department of Mathematics, University of Arlington, Arlington, TX 76019, USA;
| | - Johnathan Andres
- Department of Mathematics, University of Houston, Houston, TX 77004, USA;
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Yamazaki H, Streicher SA, Wu L, Fukuhara S, Wagner R, Heni M, Grossman SR, Lenz HJ, Setiawan VW, Le Marchand L, Huang BZ. Evidence for a causal link between intra-pancreatic fat deposition and pancreatic cancer: A prospective cohort and Mendelian randomization study. Cell Rep Med 2024; 5:101391. [PMID: 38280379 PMCID: PMC10897551 DOI: 10.1016/j.xcrm.2023.101391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
Prior observational studies suggest an association between intra-pancreatic fat deposition (IPFD) and pancreatic ductal adenocarcinoma (PDAC); however, the causal relationship is unclear. To elucidate causality, we conduct a prospective observational study using magnetic resonance imaging (MRI)-measured IPFD data and also perform a Mendelian randomization study using genetic instruments for IPFD. In the observational study, we use UK Biobank data (N = 29,463, median follow-up: 4.5 years) and find that high IPFD (>10%) is associated with PDAC risk (adjusted hazard ratio [HR]: 3.35, 95% confidence interval [95% CI]: 1.60-7.00). In the Mendelian randomization study, we leverage eight out of nine IPFD-associated genetic variants (p < 5 × 10-8) from a genome-wide association study in the UK Biobank (N = 25,617) and find that genetically determined IPFD is associated with PDAC (odds ratio [OR] per 1-standard deviation [SD] increase in IPFD: 2.46, 95% CI: 1.38-4.40) in the Pancreatic Cancer Cohort Consortium I, II, III (PanScan I-III)/Pancreatic Cancer Case-Control Consortium (PanC4) dataset (8,275 PDAC cases and 6,723 non-cases). This study provides evidence for a potential causal role of IPFD in the pathogenesis of PDAC. Thus, reducing IPFD may lower PDAC risk.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.
| | - Samantha A Streicher
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Shunichi Fukuhara
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Róbert Wagner
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, Ulm University, Ulm, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Steven R Grossman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Wendy Setiawan
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brian Z Huang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Yang S, Liu C, Jiang M, Liu X, Geng L, Zhang Y, Sun S, Wang K, Yin J, Ma S, Wang S, Belmonte JCI, Zhang W, Qu J, Liu GH. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell 2024; 15:98-120. [PMID: 37378670 PMCID: PMC10833472 DOI: 10.1093/procel/pwad039] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
6
|
Xiang X, Wei Y, Zhao K. Reassessing the causal relationship between liver diseases and cardiovascular outcomes. J Hepatol 2024; 80:e20-e22. [PMID: 37586646 DOI: 10.1016/j.jhep.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Affiliation(s)
- Xiqiao Xiang
- Department of PET-CT Imaging Centery, Shanghai Jiaotong University Affiliated Sixth People Hospital South Campus, Shanghai, 201499, China
| | - Yuanhao Wei
- School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Kun Zhao
- Department of PET-CT Imaging Centery, Shanghai Jiaotong University Affiliated Sixth People Hospital South Campus, Shanghai, 201499, China.
| |
Collapse
|
7
|
Soghomonian A, Dutour A, Kachenoura N, Thuny F, Lasbleiz A, Ancel P, Cristofari R, Jouve E, Simeoni U, Kober F, Bernard M, Gaborit B. Is increased myocardial triglyceride content associated with early changes in left ventricular function? A 1H-MRS and MRI strain study. Front Endocrinol (Lausanne) 2023; 14:1181452. [PMID: 37424866 PMCID: PMC10323751 DOI: 10.3389/fendo.2023.1181452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Type 2 diabetes (T2D) and obesity induce left ventricular (LV) dysfunction. The underlying pathophysiological mechanisms remain unclear, but myocardial triglyceride content (MTGC) could be involved. Objectives This study aimed to determine which clinical and biological factors are associated with increased MTGC and to establish whether MTGC is associated with early changes in LV function. Methods A retrospective study was conducted using five previous prospective cohorts, leading to 338 subjects studied, including 208 well-phenotyped healthy volunteers and 130 subjects living with T2D and/or obesity. All the subjects underwent proton magnetic resonance spectroscopy and feature tracking cardiac magnetic resonance imaging to measure myocardial strain. Results MTGC content increased with age, body mass index (BMI), waist circumference, T2D, obesity, hypertension, and dyslipidemia, but the only independent correlate found in multivariate analysis was BMI (p=0.01; R²=0.20). MTGC was correlated to LV diastolic dysfunction, notably with the global peak early diastolic circumferential strain rate (r=-0.17, p=0.003), the global peak late diastolic circumferential strain rate (r=0.40, p<0.0001) and global peak late diastolic longitudinal strain rate (r=0.24, p<0.0001). MTGC was also correlated to systolic dysfunction via end-systolic volume index (r=-0.34, p<0.0001) and stroke volume index (r=-0.31, p<0.0001), but not with longitudinal strain (r=0.009, p=0.88). Interestingly, the associations between MTGC and strain measures did not persist in multivariate analysis. Furthermore, MTGC was independently associated with LV end-systolic volume index (p=0.01, R²=0.29), LV end-diastolic volume index (p=0.04, R²=0.46), and LV mass (p=0.002, R²=0.58). Conclusions Predicting MTGC remains a challenge in routine clinical practice, as only BMI independently correlates with increased MTGC. MTGC may play a role in LV dysfunction but does not appear to be involved in the development of subclinical strain abnormalities.
Collapse
Affiliation(s)
- Astrid Soghomonian
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| | - Anne Dutour
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale, Paris, France
| | - Franck Thuny
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Intensive Care Unit, Department of Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Adele Lasbleiz
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| | - Patricia Ancel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | | | - Elisabeth Jouve
- UPCET, Clinical Pharmacology, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - Umberto Simeoni
- Division of Pediatrics & DOHaD Laboratory, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frank Kober
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | | | - Bénédicte Gaborit
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| |
Collapse
|