1
|
Rasheed A, Liu J, Appels R, He Z. Mobilizing Triticeae diversity from gene banks to farmer's field. MOLECULAR PLANT 2025; 18:566-569. [PMID: 40057823 DOI: 10.1016/j.molp.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Awais Rasheed
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
| | - Jindong Liu
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
| | - Rudi Appels
- University of Melbourne, Food and Nutrition, Parkville, Melbourne, VIC, Australia; AgriBio, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China.
| |
Collapse
|
2
|
Arif M, Haroon M, Nawaz AF, Abbas H, Xu R, Li L. Enhancing wheat resilience: biotechnological advances in combating heat stress and environmental challenges. PLANT MOLECULAR BIOLOGY 2025; 115:41. [PMID: 40057930 DOI: 10.1007/s11103-025-01569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/17/2025] [Indexed: 04/23/2025]
Abstract
Climate change, with its increasing temperatures, is significantly disrupting global agricultural systems, and wheat, a key cereal crop faces severe challenges. Heat stress has emerged as a critical threat, accelerating wheat growth, leading to premature maturation, reduced grain filling, and ultimately lower yields. The situation is exacerbated by more frequent and intense heat waves, particularly in regions already struggling with water scarcity. Maintaining the delicate balance of temperature and water necessary for optimal wheat production is becoming challenging, posing a serious risk to global food security. Therefore, there is an urgent need to develop adaptive strategies with innovations in breeding and transgenic technologies crucial to improving wheat resilience to environmental stresses, especially to combat the growing impacts of heat stress. Modern tools like CRISPR/Cas9, Transcription Activator-Like Effector Nucleases, and Zinc Finger Nucleases have been instrumental in developing wheat varieties with improved traits. However, the future of wheat cultivation requires more than just resistance to a single stressor. As climate change intensifies, there is an urgent need for wheat varieties that can withstand multiple stresses, including heat, drought, and pests. Developing these multi-stress-tolerant cultivars is crucial for ensuring food security in a rapidly changing climate.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China
| | - Muhammad Haroon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, 47906, USA
| | - Ayesha Fazal Nawaz
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Hina Abbas
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Ruhong Xu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China.
| | - Luhua Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China.
| |
Collapse
|
3
|
Bashir L, Budhlakoti N, Pradhan AK, Mehmood A, Haque M, Jacob SR, Bhardwaj R, Gaikwad K, Mishra DC, Kaur S, Bhati PK, Singh GP, Kumar S. Unraveling the genetic basis of heat tolerance and yield in bread wheat: QTN discovery and Its KASP-assisted validation. BMC PLANT BIOLOGY 2025; 25:268. [PMID: 40021958 PMCID: PMC11871653 DOI: 10.1186/s12870-025-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Wheat (Triticum aestivum L.), a globally significant cereal crop and staple food, faces major production challenges due to abiotic stresses such as heat stress (HS), which pose a threat to global food security. To address this, a diverse panel of 126 wheat genotypes, primarily landraces, was evaluated across twelve environments in India, comprising of three locations, two years and two growing conditions. The study aimed to identify genetic markers associated with key agronomic traits in bread wheat, including germination percentage (GERM_PCT), ground cover (GC), days to booting (DTB), days to heading (DTHD), days to flowering (DTFL), days to maturity (DTMT), plant height (PH), grain yield (GYLD), thousand grain weight (TGW), and the normalized difference vegetation index (NDVI) under both timely and late-sown conditions using 35 K SNP genotyping assays. Multi-locus GWAS (ML-GWAS) was employed to detect significant marker-trait associations, and the identified markers were further validated using Kompetitive Allele Specific PCR (KASP). RESULTS Six ML-GWAS models were employed for this purpose, leading to the identification of 42 highly significant and consistent quantitative trait nucleotides (QTNs) under both timely and late sown conditions, controlled by 20 SNPs, explaining 3-58% of the total phenotypic variation. Among these, noteworthy QTNs were a major grain yield QTN (qtn_nbpgr_GYLD_3B) on chromosome 3B, a pleiotropic SNP AX-95018072 on chromosome 7A influencing phenology and NDVI, and robust TGW QTNs on chromosomes 2B (qtn_nbpgr_TGW_2B), 1A (qtn_nbpgr_TGW_1A), and 4B (qtn_nbpgr_TGW_4B). Furthermore, annotation revealed that candidate genes near these QTNs encoded stress-responsive proteins, such as chaperonins, glycosyl hydrolases, and signaling molecules. Additionally, three major SNPs AX-95018072 (7A), AX-94946941 (6B), and AX-95232570 (1B) were successfully validated using KASP assay. CONCLUSION Our study effectively uncovered novel QTNs and candidate genes linked to heat tolerance and yield-related traits in wheat through an extensive genetic approaches. These QTNs not only corresponded with previously identified QTLs and genes associated with yield traits but also highlighted several new loci, broadening the existing genetic understanding. These findings provide valuable insights into the genetic basis of heat tolerance in wheat and offer genomic resources, including validated markers that could accelerate marker-assisted breeding and the development of next-generation heat-resilient cultivars.
Collapse
Affiliation(s)
- Latief Bashir
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anjan Kumar Pradhan
- School of Plant, Environmental and Soil Science, LSU AgCenter, Louisiana State University, Baton Rouge, USA
| | - Azhar Mehmood
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Mahin Haque
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Sherry R Jacob
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Kiran Gaikwad
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Pradeep Kumar Bhati
- Borlaug Institute for South Asia (BISA, CIMMYT-India, BISA Farm Ladhowal, Ludhiana, Punjab, 141008, India
| | - G P Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
4
|
Nyine M, Davidson D, Adhikari E, Clinesmith M, Wang H, Akhunova A, Fritz A, Akhunov E. Genomic signals of ecogeographic adaptation in a wild relative are associated with improved wheat performance under drought stress. Genome Biol 2025; 26:35. [PMID: 39985084 PMCID: PMC11844086 DOI: 10.1186/s13059-025-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Prioritizing wild relative diversity for improving crop adaptation to emerging drought-prone environments is challenging. Here, we combine the genome-wide environmental scans (GWES) in wheat diploid ancestor Aegilops tauschii (Ae. tauschii) with allele testing in the genetic backgrounds of adapted cultivars to identify diversity for improving wheat adaptation to water-limiting conditions. RESULTS We evaluate the adaptive allele effects in Ae. tauschii-wheat introgression lines phenotyped for multiple traits under irrigated and water-limiting conditions using both unmanned aerial system-based imaging and conventional approaches. The GWES show that climatic gradients alone explain more than half of genomic variation in Ae. tauschii, with many alleles associated with climatic factors in Ae. tauschii being linked with improved performance of introgression lines under water-limiting conditions. We find that the most significant GWES signals associated with temperature annual range in the wild relative are linked with reduced canopy temperature in introgression lines and increased yield. CONCLUSIONS Our results suggest that introgression of climate-adaptive alleles from Ae. tauschii has the potential to improve wheat performance under water-limiting conditions, and that variants controlling physiological processes responsible for maintaining leaf temperature are likely among the targets of adaptive selection in a wild relative. Adaptive variation uncovered by GWES in wild relatives has the potential to improve climate resilience of crop varieties.
Collapse
Affiliation(s)
- Moses Nyine
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA
- Plantain Breeding Program, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dwight Davidson
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA
| | - Elina Adhikari
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- , Bayer, Chesterfield, USA
| | - Marshall Clinesmith
- Department of Agronomy, Kansas State University, Manhattan, USA
- , Syngenta, Junction City, USA
| | - Huan Wang
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Broad Institute, Cambridge, Boston, USA
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Integrated Genomics Facility, Kansas State University, Manhattan, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, USA.
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA.
| |
Collapse
|
5
|
Balla MY, Kamal NM, Tahir ISA, Gorafi YSA, Abdalla MGA, Tsujimoto H. Intraspecific variation for heat stress tolerance in wild emmer-derived durum wheat populations. FRONTIERS IN PLANT SCIENCE 2025; 16:1523562. [PMID: 39916777 PMCID: PMC11798995 DOI: 10.3389/fpls.2025.1523562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
High temperatures pose a major threat to wheat productivity and necessitate the development of new cultivars that are resilient to future heat stress. Wild emmer (Triticum turgidum L. ssp. dicoccoides), which is a direct progenitor of domesticated durum wheat (Triticum turgidum L. ssp. durum) and contributor to the A and B genome of bread wheat (Triticum aestivum), offers a valuable genetic reservoir for developing climate-resilient wheat. However, the morphology of wild emmer is different from that of durum and bread wheat, in particular, the spikelets are fragile and naturally fall off, making it difficult to study its agronomic traits. In this study, we created nine backcrossed families between the popular durum wheat cultivar 'Miki 3' and nine wild emmer accessions collected from northern and southern lineages of this species. The objective was to investigate the intraspecific genetic variation in wild emmer and identify traits associated with heat stress tolerance. We evaluated these nine families under multi-environments ranging from optimum to severe heat stress conditions in Japan and Sudan and measured important agronomic traits. The result showed that two families, developed from accessions of both northern and southern lineages exhibited high harvest index, elevated chlorophyll content, and reduced canopy temperature under heat stress. Additionally, one family developed from an accession of the southern lineage displayed high biomass, harvest index, and seed number under heat-stress conditions. These three families produced high heat tolerant lines with unique introgressed segments from their wild emmer parents on chromosomes 1A, 2B, 5B, 6B, and 7B, which may be linked to heat resilience. From these results, we were able to identify significant intraspecific diversity between the wild emmer accessions in terms of heat stress tolerance. However, no significant tendency between the northern and southern lineages of wild emmer has been identified. These findings emphasize the need to harness not only the interspecific but also the intraspecific genetic variation of wild emmer diversity to uncover valuable genes for heat stress tolerance in wheat breeding programs.
Collapse
Affiliation(s)
- Mohammed Yousif Balla
- Arid Land Research Center, Tottori University, Tottori, Japan
- Wheat Research Program, Agricultural Research Corporation, Wad Medani, Sudan
| | - Nasrein Mohamed Kamal
- Wheat Research Program, Agricultural Research Corporation, Wad Medani, Sudan
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
| | - Izzat Sidahmed Ali Tahir
- Arid Land Research Center, Tottori University, Tottori, Japan
- Wheat Research Program, Agricultural Research Corporation, Wad Medani, Sudan
| | - Yasir Serag Alnor Gorafi
- Wheat Research Program, Agricultural Research Corporation, Wad Medani, Sudan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
6
|
Giovenali G, Di Romana ML, Capoccioni A, Riccardi V, Kuzmanović L, Ceoloni C. Exploring Thinopyrum spp. Group 7 Chromosome Introgressions to Improve Durum Wheat Performance under Intense Daytime and Night-Time Heat Stress at Anthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2605. [PMID: 39339580 PMCID: PMC11434826 DOI: 10.3390/plants13182605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Durum wheat (DW) is one of the major crops grown in the Mediterranean area, a climate-vulnerable region where the increase in day/night (d/n) temperature is severely threatening DW yield stability. In order to improve DW heat tolerance, the introgression of chromosomal segments derived from the wild gene pool is a promising strategy. Here, four DW-Thinopyrum spp. near-isogenic recombinant lines (NIRLs) were assessed for their physiological response and productive performance after intense heat stress (IH, 37/27 °C d/n) had been applied for 3 days at anthesis. The NIRLs included two primary types (R5, R112), carriers (+) of a differently sized Th. ponticum 7el1L segment on the DW 7AL arm, and two corresponding secondary types (R69-9/R5, R69-9/R112), possessing a Th. elongatum 7EL segment distally inserted into the 7el1L ones. Their response to the IH stress was compared to that of corresponding non-carrier sib lines (-) and the heat-tolerant cv. Margherita. Overall, the R112+, R69-9/R5+ and R69-9/R112+ NIRLs exhibited a tolerant behaviour towards the applied stress, standing out for the maintenance of leaf relative water content but also for the accumulation of proline and soluble sugars in the flag leaf and the preservation of photosynthetic efficiency. As a result, all the above three NIRLs (R112+ > R69-9/R5+ > R69-9/R112+) displayed good yield stability under the IH, also in comparison with cv. Margherita. R112+ particularly relied on the strength of spike fertility/grain number traits, while R69-9/R5+ benefited from efficient compensation by the grain weight increase. This work largely confirmed and further substantiated the value of exploiting the wild germplasm of Thinopyrum species as a useful source for the improvement of DW tolerance to even extreme abiotic stress conditions, such as the severe heat treatment throughout day- and night-time applied here.
Collapse
Affiliation(s)
| | | | | | | | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| |
Collapse
|
7
|
Gudi S, Jain M, Singh S, Kaur S, Srivastava P, Mavi GS, Chhuneja P, Sohu VS, Safhi FA, El-Moneim DA, Sharma A. Stress adaptive plasticity from Aegilops tauschii introgression lines improves drought and heat stress tolerance in bread wheat ( Triticum aestivum L.). PeerJ 2024; 12:e17528. [PMID: 38881860 PMCID: PMC11177856 DOI: 10.7717/peerj.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Aegilops tauchii is a D-genome donor of hexaploid wheat and is a potential source of genes for various biotic and abiotic stresses including heat and drought. In the present study, we used multi-stage evaluation technique to understand the effects of heat and drought stresses on Ae. tauschii derived introgression lines (ILs). Preliminary evaluation (during stage-I) of 369 ILs for various agronomic traits identified 59 agronomically superior ILs. In the second stage (stage-II), selected ILs (i.e., 59 ILs) were evaluated for seedling heat (at 30 °C and 35 °C) and drought (at 20% poly-ethylene glycol; PEG) stress tolerance under growth chambers (stage-II). Heat and drought stress significantly reduced the seedling vigour by 59.29 and 60.37 percent, respectively. Genotype × treatment interaction analysis for seedling vigour stress tolerance index (STI) identified IL-50, IL-56, and IL-68 as high-performing ILs under heat stress and IL-42 and IL-44 as high-performing ILs under drought stress. It also revealed IL-44 and IL-50 as the stable ILs under heat and drought stresses. Furthermore, in the third stage (stage-III), selected ILs were evaluated for heat and drought stress tolerance under field condition over two cropping seasons (viz., 2020-21 and 2021-22), which significantly reduced the grain yield by 72.79 and 48.70 percent, respectively. Stability analysis was performed to identify IL-47, IL-51, and IL-259 as the most stable ILs in stage-III. Tolerant ILs with specific and wider adaptability identified in this study can serve as the potential resources to understand the genetic basis of heat and drought stress tolerance in wheat and they can also be utilized in developing high-yielding wheat cultivars with enhanced heat and drought stress tolerance.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohit Jain
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurvinder Singh Mavi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Virinder Singh Sohu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Fatmah A Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Masters LE, Tomaszewska P, Schwarzacher T, Hackel J, Zuntini AR, Heslop-Harrison P, Vorontsova MS. Phylogenomic analysis reveals five independently evolved African forage grass clades in the genus Urochloa. ANNALS OF BOTANY 2024; 133:725-742. [PMID: 38365451 PMCID: PMC11082517 DOI: 10.1093/aob/mcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.
Collapse
Affiliation(s)
- Lizo E Masters
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Paulina Tomaszewska
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Department of Genetics and Cell Physiology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jan Hackel
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexandre R Zuntini
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Maria S Vorontsova
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
9
|
Golan G, Weiner J, Zhao Y, Schnurbusch T. Agroecological genetics of biomass allocation in wheat uncovers genotype interactions with canopy shade and plant size. THE NEW PHYTOLOGIST 2024; 242:107-120. [PMID: 38326944 DOI: 10.1111/nph.19576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
How plants distribute biomass among organs influences resource acquisition, reproduction and plant-plant interactions, and is essential in understanding plant ecology, evolution, and yield production in agriculture. However, the genetic mechanisms regulating allocation responses to the environment are largely unknown. We studied recombinant lines of wheat (Triticum spp.) grown as single plants under sunlight and simulated canopy shade to investigate genotype-by-environment interactions in biomass allocation to the leaves, stems, spikes, and grains. Size-corrected mass fractions and allometric slopes were employed to dissect allocation responses to light limitation and plant size. Size adjustments revealed light-responsive alleles associated with adaptation to the crop environment. Combined with an allometric approach, we demonstrated that polymorphism in the DELLA protein is associated with the response to shade and size. While a gibberellin-sensitive allelic effect on stem allocation was amplified when plants were shaded, size-dependent effects of this allele drive allocation to reproduction, suggesting that the ontogenetic trajectory of the plant affects the consequences of shade responses for allocation. Our approach provides a basis for exploring the genetic determinants underlying investment strategies in the face of different resource constraints and will be useful in predicting social behaviours of individuals in a crop community.
Collapse
Affiliation(s)
- Guy Golan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
| | - Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120, Halle, Germany
| |
Collapse
|
10
|
Ahmed MIY, Kamal NM, Gorafi YSA, Abdalla MGA, Tahir ISA, Tsujimoto H. Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions. PLANTS (BASEL, SWITZERLAND) 2024; 13:347. [PMID: 38337879 PMCID: PMC10856904 DOI: 10.3390/plants13030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
In the face of climate change, bringing more useful alleles and genes from wild relatives of wheat is crucial to develop climate-resilient varieties. We used two populations of backcrossed recombinant inbred lines (BIL1 and BIL2), developed by crossing and backcrossing two intra-specifically diverse Aegilops tauschii accessions from lineage 1 and lineage 2, respectively, with the common wheat cultivar 'Norin 61'. This study aimed to identify quantitative trait loci (QTLs) associated with heat stress (HS) tolerance. The two BILs were evaluated under heat stress environments in Sudan for phenology, plant height (PH), grain yield (GY), biomass (BIO), harvest index (HI), and thousand-kernel weight (TKW). Grain yield was significantly correlated with BIO and TKW under HS; therefore, the stress tolerance index (STI) was calculated for these traits as well as for GY. A total of 16 heat-tolerant lines were identified based on GY and STI-GY. The QTL analysis performed using inclusive composite interval mapping identified a total of 40 QTLs in BIL1 and 153 QTLs in BIL2 across all environments. We detected 39 QTLs associated with GY-STI, BIO-STI, and TKW-STI in both populations (14 in BIL1 and 25 in BIL2). The QTLs associated with STI were detected on chromosomes 1A, 3A, 5A, 2B, 4B, and all the D-subgenomes. We found that QTLs were detected only under HS for GY on chromosome 5A, TKW on 3B and 5B, PH on 3B and 4B, and grain filling duration on 2B. The higher number of QTLs identified in BIL2 for heat stress tolerance suggests the importance of assessing the effects of intraspecific variation of Ae. tauschii in wheat breeding as it could modulate the heat stress responses/adaptation. Our study provides useful genetic resources for uncovering heat-tolerant QTLs for wheat improvement for heat stress environments.
Collapse
Affiliation(s)
- Monir Idres Yahya Ahmed
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8550, Japan;
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (I.S.A.T.)
- Agricultural Research Corporation (ARC), Wad-Medani P.O. Box 126, Sudan; (Y.S.A.G.); (M.G.A.A.)
| | - Yasir Serag Alnor Gorafi
- Agricultural Research Corporation (ARC), Wad-Medani P.O. Box 126, Sudan; (Y.S.A.G.); (M.G.A.A.)
- International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
| | | | - Izzat Sidahmed Ali Tahir
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (I.S.A.T.)
- Agricultural Research Corporation (ARC), Wad-Medani P.O. Box 126, Sudan; (Y.S.A.G.); (M.G.A.A.)
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (I.S.A.T.)
| |
Collapse
|
11
|
Lee C, Harvey JT, Nagila A, Qin K, Leskovar DI. Thermotolerance of tomato plants grafted onto wild relative rootstocks. FRONTIERS IN PLANT SCIENCE 2023; 14:1252456. [PMID: 38053760 PMCID: PMC10694270 DOI: 10.3389/fpls.2023.1252456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Heat stress is a major environmental constraint limiting tomato production. Tomato wild relatives Solanum pennellii and S. peruvianum are known for their drought tolerance but their heat stress responses have been less investigated, especially when used as rootstocks for grafting. This study aimed to evaluate the physiological and biochemical heat stress responses of tomato seedlings grafted onto a commercial 'Maxifort' and wild relative S. pennellii and S. peruvianum rootstocks. 'Celebrity' and 'Arkansas Traveler' tomato scion cultivars, previously characterized as heat-tolerant and heat-sensitive, respectively, were grafted onto the rootstocks or self-grafted as controls. Grafted seedlings were transplanted into 10-cm pots and placed in growth chambers set at high (38/30°C, day/night) and optimal (26/19°C) temperatures for 21 days during the vegetative stage. Under heat stress, S. peruvianum-grafted tomato seedlings had an increased leaf proline content and total non-enzymatic antioxidant capacity in both leaves and roots. Additionally, S. peruvianum-grafted plants showed more heat-tolerant responses, evidenced by their increase in multiple leaf antioxidant enzyme activities (superoxide dismutase, catalase and peroxidase) compared to self-grafted and 'Maxifort'-grafted plants. S. pennellii-grafted plants had similar or higher activities in all antioxidant enzymes than other treatments at optimal temperature conditions but significantly lower activities under heat stress conditions, an indication of heat sensitivity. Both S. pennellii and S. peruvianum-grafted plants had higher leaf chlorophyll content, chlorophyll fluorescence and net photosynthetic rate under heat stress, while their plant growth was significantly lower than self-grafted and 'Maxifort'-grafted plants possibly from graft incompatibility. Root abscisic acid (ABA) contents were higher in 'Maxifort' and S. peruvianum rootstocks, but no ABA-induced antioxidant activities were detected in either leaves or roots. In conclusion, the wild relative rootstock S. peruvianum was effective in enhancing the thermotolerance of scion tomato seedlings, showing potential as a breeding material for the introgression of heat-tolerant traits in interspecific tomato rootstocks.
Collapse
Affiliation(s)
| | | | | | | | - Daniel I. Leskovar
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX, United States
| |
Collapse
|
12
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Hameed R, Abbas A, Saeed M, Shahani AAA, Huang P, Du D, Zulfiqar U, Alamri S, Alfagham AT. Investigating the dynamic responses of Aegilops tauschii Coss. to salinity, drought, and nitrogen stress: a comprehensive study of competitive growth and biochemical and molecular pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1238704. [PMID: 37745988 PMCID: PMC10511890 DOI: 10.3389/fpls.2023.1238704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Aegilops tauschii (Coss.) is a highly deleterious, rapidly proliferating weed within the wheat, and its DD genome composition exhibits adaptability toward diverse abiotic stresses and demonstrates heightened efficacy in nutrient utilization. Current study investigated different variegated impacts of distinct nitrogen concentrations with varied plant densities, scrutinizing the behavior of Ae. tauschii under various salinity and drought stress levels through multiple physiological, biochemical, and molecular pathways. Different physiological parameters attaining high growth with different plant density and different nitrogen availability levels increased Ae. tauschii dominancy. Conversely, under the duress of salinity and drought, Ae. tauschii showcased an enhanced performance through a comprehensive array of physiological and biochemical parameters, including catalase, peroxidase, malondialdehyde, and proline content. Notably, salinity-associated traits such as sodium, potassium, and the sodium-potassium ratio exhibited significant variations and demonstrated remarkable tolerance capabilities. In the domain of molecular pathways, the HKT and DREB genes have displayed a remarkable upregulation, showcasing a comparatively elevated expression profile in reaction to different levels of salinity and drought-induced stress. Without a doubt, this information will make a substantial contribution to the understanding of the fundamental behavioral tendencies and the efficiency of nutrient utilization in Ae. tauschii. Moreover, it will offer innovative viewpoints for integrated management, thereby enabling the enhancement of strategies for adept control and alleviation.
Collapse
Affiliation(s)
- Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Saeed
- Department of Weed Science and Botany, The University of Agriculture, Peshawar, Pakistan
| | - Aitezaz A. A. Shahani
- Key Laboratory of Crop Sciences and Plant Breeding Genetics, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alanoud T. Alfagham
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|