1
|
Moralejo E, Giménez-Romero À, Matías MA. Linking intercontinental biogeographic events to decipher how European vineyards escaped Pierce's disease. Proc Biol Sci 2024; 291:20241130. [PMID: 39353554 PMCID: PMC11444759 DOI: 10.1098/rspb.2024.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Global change is believed to be a major driver of the emergence of invasive pathogens. Yet, there are few documented examples that illustrate the processes that hinder or trigger their geographic spread. Here, we present phylogenetic, epidemiological and historical evidence to explain how European vineyards escaped Xylella fastidiosa (Xf), the vector-borne bacterium responsible for Pierce's disease (PD). Using Bayesian temporal reconstruction, we show that the export of American grapevines to France as rootstocks to combat phylloxera (~1872-1895) preceded the spread of the Xf grapevine lineage in the USA. We found that the time of the most recent common ancestor in California dates to around 1875, which agrees with the emergence of the first PD outbreak and the expansion into the southeastern US around 1895. We also show that between 1870 and 1990, climatic conditions in continental Europe were mostly below the threshold for the development of PD epidemics. However, our model indicates an inadvertent expansion of risk in southern Europe since the 1990s, which is accelerating with global warming. Our temporal approach identifies the biogeographical conditions that have so far prevented PD in southern European wine-producing areas and predicts that disease risk will increase substantially with increasing temperatures.
Collapse
Affiliation(s)
- Eduardo Moralejo
- Tragsa, Passatge Cala Figuera, no. 6, Mallorca, Balearic Islands, Palma de Mallorca07009, Spain
| | - Àlex Giménez-Romero
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca07122, Spain
| | - Manuel A. Matías
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca07122, Spain
| |
Collapse
|
2
|
De La Fuente L, Navas-Cortés JA, Landa BB. Ten Challenges to Understanding and Managing the Insect-Transmitted, Xylem-Limited Bacterial Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:869-884. [PMID: 38557216 DOI: 10.1094/phyto-12-23-0476-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Juan A Navas-Cortés
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Blanca B Landa
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
3
|
Giménez-Romero À, Iturbide M, Moralejo E, Gutiérrez JM, Matías MA. Global warming significantly increases the risk of Pierce's disease epidemics in European vineyards. Sci Rep 2024; 14:9648. [PMID: 38671045 DOI: 10.1038/s41598-024-59947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Pierce's disease (PD) is a vector-borne disease caused by the bacteria Xylella fastidiosa, which affects grapevines in the Americas. Currently, vineyards in continental Europe, the world's largest producer of quality wine, have not yet been affected by PD. However, climate change may alter this situation. Here we incorporate the latest regional climate change projections into a climate-driven epidemiological model to assess the risk of PD epidemics in Europe for different levels of global warming. We found a significant increase in risk above + 2 ∘ C in the main wine-producing regions of France, Italy and Portugal, in addition to a critical tipping point above + 3 ∘ C for the possible spread of PD beyond the Mediterranean. The model identifies decreasing risk trends in Spain, as well as contrasting patterns across the continent with different velocities of risk change and epidemic growth rates. Although there is some uncertainty in model projections over time, spatial patterns of risk are consistent across different climate models. Our study provides a comprehensive analysis of the future of PD at multiple spatial scales (country, Protected Designation of Origin and vineyard), revealing where, why and when PD could become a new threat to the European wine industry.
Collapse
Affiliation(s)
- Àlex Giménez-Romero
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain
| | - Maialen Iturbide
- Instituto de Física de Cantabria (IFCA, CSIC-University of Cantabria), Avenida de los Castros, 39005, Santander, Spain
| | - Eduardo Moralejo
- Tragsa, Passatge Cala Figuera 6, 07009, Palma de Mallorca, Spain
| | - José M Gutiérrez
- Instituto de Física de Cantabria (IFCA, CSIC-University of Cantabria), Avenida de los Castros, 39005, Santander, Spain
| | - Manuel A Matías
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain.
| |
Collapse
|
4
|
Burbank L, Sisterson MS, Wei W, Ortega B, Luna N, Naegele R. High Growing Season Temperatures Limit Winter Recovery of Grapevines from Xylella fastidiosa Infection - Implications for Epidemiology in Hot Climates. PLANT DISEASE 2023; 107:3858-3867. [PMID: 37278547 DOI: 10.1094/pdis-03-23-0492-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of widespread plant pathogens is challenging as climatic differences among crop-growing regions may alter key aspects of pathogen spread and disease severity. Xylella fastidiosa is a xylem-limited bacterial pathogen that is transmitted by xylem sap-feeding insects. Geographic distribution of X. fastidiosa is limited by winter climate, and vines infected with X. fastidiosa can recover from infection when held at cold temperatures. California has a long history of research on Pierce's disease and significant geographic and climatic diversity among grape-growing regions. This background in combination with experimental disease studies under controlled temperature conditions can inform risk assessment for X. fastidiosa spread and epidemic severity across different regions and under changing climate conditions. California's grape-growing regions have considerable differences in summer and winter climate. In northern and coastal regions, summers are mild and winters are cool, conditions which favor winter recovery of infected vines. In contrast, in inland and southern areas, summers are hot and winters mild, reducing likelihood of winter recovery. Here, winter recovery of three table grape cultivars (Flame, Scarlet Royal, and Thompson Seedless) and three wine grape cultivars (Sauvignon Blanc, Cabernet Sauvignon, and Zinfandel) were evaluated under temperature conditions representative of the San Joaquin Valley, an area with hot summers and mild winters that has been severely impacted by Pierce's disease and contains a large portion of California grape production. Mechanically inoculated vines were held in the greenhouse under one of three warming treatments to represent different seasonal inoculation dates prior to being moved into a cold chamber. Winter recovery under all treatments was generally limited but with some cultivar variation. Given hot summer temperatures of many grape-growing regions worldwide, as well as increasing global temperatures overall, winter recovery of grapevines should not be considered a key factor limiting X. fastidiosa spread and epidemic severity in the majority of cases.
Collapse
Affiliation(s)
- Lindsey Burbank
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Mark S Sisterson
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Wei Wei
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Brandon Ortega
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Nathaniel Luna
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Rachel Naegele
- Sugar Beet and Bean Research Unit, Agricultural Research Service, USDA, East Lansing, MI 48824
| |
Collapse
|
5
|
Giménez-Romero À, Moralejo E, Matías MA. A Compartmental Model for Xylella fastidiosa Diseases with Explicit Vector Seasonal Dynamics. PHYTOPATHOLOGY 2023; 113:1686-1696. [PMID: 36774557 DOI: 10.1094/phyto-11-22-0428-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The bacterium Xylella fastidiosa is mainly transmitted by the meadow spittlebug Philaenus spumarius in Europe, where it has caused significant economic damage to olive and almond trees. Understanding the factors that determine disease dynamics in pathosystems that share similarities can help to design control strategies focused on minimizing transmission chains. Here, we introduce a compartmental model for X. fastidiosa-caused diseases in Europe that accounts for the main relevant epidemiological processes, including the seasonal dynamics of P. spumarius. The model was confronted with epidemiological data from the two major outbreaks of X. fastidiosa in Europe, the olive quick disease syndrome in Apulia, Italy, caused by the subspecies pauca, and the almond leaf scorch disease in Mallorca, Spain, caused by subspecies multiplex and fastidiosa. Using a Bayesian inference framework, we show how the model successfully reproduces the general field data in both diseases. In a global sensitivity analysis, the vector-to-plant and plant-to-vector transmission rates, together with the vector removal rate, were the most influential parameters in determining the time of the infectious host population peak, the incidence peak, and the final number of dead hosts. We also used our model to check different vector-based control strategies, showing that a joint strategy focused on increasing the rate of vector removal while lowering the number of annual newborn vectors is optimal for disease control. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Àlex Giménez-Romero
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | | | - Manuel A Matías
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|