1
|
Ramli MFH, Aguado BA, Young JL. Signals from the extracellular matrix: Region- and sex-specificity in cardiac aging. Curr Opin Cell Biol 2025; 95:102524. [PMID: 40347709 DOI: 10.1016/j.ceb.2025.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
During aging, the cardiac extracellular matrix (ECM) undergoes gradual remodeling that reduces the heart's ability to function. Specific ECM changes cause alterations in cellular signaling pathways, eliciting maladaptive responses. Here, we provide insight into the current knowledge of how age-specific ECM changes contribute to altered ligand-receptor interactions, dysregulated mechanotransduction, and the propagation of pro-fibrotic signaling cascades that underpin dysfunction. We also highlight regional and sex differences that new biomolecular and bioengineered technologies have recently uncovered. We call for new biomaterial strategies that mimic spatiotemporal and sex-specific ECM alterations to equip researchers with the tools to unravel complex cellular signaling events. We believe this can be achieved through interdisciplinary cooperation amongst researchers spanning matrix biology, biomaterials, spatial omics, and biomedical engineering.
Collapse
Affiliation(s)
- Md Faris H Ramli
- Mechanobiology Institute (MBI), National University of Singapore, 117411, Singapore
| | - Brian A Aguado
- Shu Chien-Gene Lay Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA; Program in Materials Science and Engineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Jennifer L Young
- Mechanobiology Institute (MBI), National University of Singapore, 117411, Singapore; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore.
| |
Collapse
|
2
|
Luo LY, Wu H, Zhao LM, Zhang YH, Huang JH, Liu QY, Wang HT, Mo DX, EEr HH, Zhang LQ, Chen HL, Jia SG, Wang WM, Li MH. Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness. Nat Genet 2025; 57:218-230. [PMID: 39779954 DOI: 10.1038/s41588-024-02037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.0), including all autosomes and the X and Y chromosomes. This genome adds 220.05 Mb of previously unresolved regions and 754 new genes to the most updated reference assembly ARS-UI_Ramb_v3.0; it contains four types of repeat units (SatI, SatII, SatIII and CenY) in centromeric regions. T2T-sheep1.0 has a base accuracy of more than 99.999%, corrects several structural errors in previous reference assemblies and improves structural variant detection in repetitive sequences. Alignment of whole-genome short-read sequences of global domestic and wild sheep against T2T-sheep1.0 identifies 2,664,979 new single-nucleotide polymorphisms in previously unresolved regions, which improves the population genetic analyses and detection of selective signals for domestication (for example, ABCC4) and wool fineness (for example, FOXQ1).
Collapse
Affiliation(s)
- Ling-Yun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Wu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li-Ming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ya-Hui Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia-Hui Huang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiu-Yue Liu
- Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hai-Tao Wang
- Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dong-Xin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - He-Hua EEr
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lian-Quan Zhang
- Ningxia Shuomuyanchi Tan Sheep Breeding Co. Ltd., Wuzhong, China
| | | | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Wei-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Bonazzola R, Ferrante E, Ravikumar N, Xia Y, Keavney B, Plein S, Syeda-Mahmood T, Frangi AF. Unsupervised ensemble-based phenotyping enhances discoverability of genes related to left-ventricular morphology. NAT MACH INTELL 2024; 6:291-306. [PMID: 38523678 PMCID: PMC10957472 DOI: 10.1038/s42256-024-00801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/25/2024] [Indexed: 03/26/2024]
Abstract
Recent genome-wide association studies have successfully identified associations between genetic variants and simple cardiac morphological parameters derived from cardiac magnetic resonance images. However, the emergence of large databases, including genetic data linked to cardiac magnetic resonance facilitates the investigation of more nuanced patterns of cardiac shape variability than those studied so far. Here we propose a framework for gene discovery coined unsupervised phenotype ensembles. The unsupervised phenotype ensemble builds a redundant yet highly expressive representation by pooling a set of phenotypes learnt in an unsupervised manner, using deep learning models trained with different hyperparameters. These phenotypes are then analysed via genome-wide association studies, retaining only highly confident and stable associations across the ensemble. We applied our approach to the UK Biobank database to extract geometric features of the left ventricle from image-derived three-dimensional meshes. We demonstrate that our approach greatly improves the discoverability of genes that influence left ventricle shape, identifying 49 loci with study-wide significance and 25 with suggestive significance. We argue that our approach would enable more extensive discovery of gene associations with image-derived phenotypes for other organs or image modalities.
Collapse
Affiliation(s)
- Rodrigo Bonazzola
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing and School of Medicine, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Enzo Ferrante
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
| | - Nishant Ravikumar
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing and School of Medicine, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Yan Xia
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing and School of Medicine, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | - Alejandro F. Frangi
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Computer Science, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg. Cardiovascular Sciences and Electrical Engineering Departments, KU Leuven, Leuven, Belgium
- Alan Turing Institute, London, UK
| |
Collapse
|
5
|
Taye N, Redhead C, Hubmacher D. Secreted ADAMTS-like proteins as regulators of connective tissue function. Am J Physiol Cell Physiol 2024; 326:C756-C767. [PMID: 38284126 DOI: 10.1152/ajpcell.00680.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The extracellular matrix (ECM) determines functional properties of connective tissues through structural components, such as collagens, elastic fibers, or proteoglycans. The ECM also instructs cell behavior through regulatory proteins, including proteases, growth factors, and matricellular proteins, which can be soluble or tethered to ECM scaffolds. The secreted a disintegrin and metalloproteinase with thrombospondin type 1 repeats/motifs-like (ADAMTSL) proteins constitute a family of regulatory ECM proteins that are related to ADAMTS proteases but lack their protease domains. In mammals, the ADAMTSL protein family comprises seven members, ADAMTSL1-6 and papilin. ADAMTSL orthologs are also present in the worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster. Like other matricellular proteins, ADAMTSL expression is characterized by tight spatiotemporal regulation during embryonic development and early postnatal growth and by cell type- and tissue-specific functional pleiotropy. Although largely quiescent during adult tissue homeostasis, reexpression of ADAMTSL proteins is frequently observed in the context of physiological and pathological tissue remodeling and during regeneration and repair after injury. The diverse functions of ADAMTSL proteins are further evident from disorders caused by mutations in individual ADAMTSL proteins, which can affect multiple organ systems. In addition, genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) in ADAMTSL genes to complex traits, such as lung function, asthma, height, body mass, fibrosis, or schizophrenia. In this review, we summarize the current knowledge about individual members of the ADAMTSL protein family and highlight recent mechanistic studies that began to elucidate their diverse functions.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Charlene Redhead
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
6
|
Rypdal KB, Apte SS, Lunde IG. Emerging roles for the ADAMTS-like family of matricellular proteins in cardiovascular disease through regulation of the extracellular microenvironment. Mol Biol Rep 2024; 51:280. [PMID: 38324186 PMCID: PMC10850197 DOI: 10.1007/s11033-024-09255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Dysregulation of the extracellular matrix (ECM) occurs widely across cardiovascular pathologies. Recent work has revealed important roles for the «a disintegrin-like and metalloprotease domain with thrombospondin-type 1 motifs like" (ADAMTSL) family of secreted glycoproteins in cardiovascular tissues during development and disease. Key insights in this regard have come from naturally occurring gene mutations in humans and animals that result in severe diseases with cardiovascular manifestations or aortopathies. Expression of ADAMTSL genes is greatly increased in the myocardium during heart failure. Genetically modified mice recapitulate phenotypes of patients with ADAMTSL mutations and demonstrate important functions in the ECM. The novel functions thus disclosed are intriguing because, while these proteins are neither structural, nor proteases like the related ADAMTS proteases, they appear to act as regulatory, i.e., matricellular proteins. Evidence from genetic variants, genetically engineered mouse mutants, and in vitro investigations have revealed regulatory functions of ADAMTSLs related to fibrillin microfibrils and growth factor signaling. Interestingly, the ability to regulate transforming growth factor (TGF)β signaling may be a shared characteristic of some ADAMTSLs. TGFβ signaling is important in cardiovascular development, health and disease and a central driver of ECM remodeling and cardiac fibrosis. New strategies to target dysregulated TGFβ signaling are warranted in aortopathies and cardiac fibrosis. With their emerging roles in cardiovascular tissues, the ADAMTSL proteins may provide causative genes, diagnostic biomarkers and novel treatment targets in cardiovascular disease. Here, we discuss the relevance of ADAMTSLs to cardiovascular medicine.
Collapse
Affiliation(s)
- Karoline Bjarnesdatter Rypdal
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway.
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Ida G Lunde
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Cramer TML, Pinan-Lucarre B, Cavaccini A, Damilou A, Tsai YC, Bhat MA, Panzanelli P, Rama N, Mehlen P, Benke D, Karayannis T, Bessereau JL, Tyagarajan SK. Adamtsl3 mediates DCC signaling to selectively promote GABAergic synapse function. Cell Rep 2023; 42:112947. [PMID: 37572323 DOI: 10.1016/j.celrep.2023.112947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023] Open
Abstract
The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.
Collapse
Affiliation(s)
- Teresa M L Cramer
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Anna Cavaccini
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Angeliki Damilou
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yuan-Chen Tsai
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Musadiq A Bhat
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Dietmar Benke
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Theofanis Karayannis
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jean-Louis Bessereau
- University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| | - Shiva K Tyagarajan
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|