1
|
Dharani V, Nishu S, Hariprasath L. PCOS and genetics: Exploring the heterogeneous role of potential genes in ovarian dysfunction, a hallmark of PCOS - A review. Reprod Biol 2025; 25:101017. [PMID: 40222066 DOI: 10.1016/j.repbio.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
PCOS is an endocrine disorder that affects women of reproductive age. The root of PCOS is ovarian dysfunction, which presents as hormonal disturbances affecting normal ovarian function to cause the symptoms and complications of the disease. This dysfunction causes symptoms like impaired maturation of follicles and disorders of various origins with multiple treatment regimens that are not always clear. Therefore, the present review mainly concentrates on the genetic level of ovarian dysfunction of PCOS. The articles were identified through a vigorous literature search where search engines such as PubMed, Google Scholar, databases, and Science Direct were used, and the articles published from 2015 to 2025 were referred. We identified that the key genes involved in the ovarian dysfunctions in PCOS include CYP11A1, CYP17A1, CYP19A1, AR, FSHR, LHCGR, AMH, INSR, SHBG, IRS1, GATA4, ADIPOQ, YAP1, TCF7L2, and DENND1A, which play a role in gonadotropin action, steroidogenesis, and folliculogenesis. Furthermore, epigenetic factors and miRNAs miR-93, 222, 155, 146a, 132, 320, 27a, 483, 21, 378, 17-92 Cluster, and 375, 221 are also involved in it. Abnormal expression of these genes is known to play a critical role in the etiology and pathogenesis of PCOS. Present treatment includes the use of oral contraceptives, anti-androgen agents, insulin-sensitizing agents, and ovulation-inducing agents, and future treatment may consist of miRNA therapy, drug repositioning, and genetic markers that might be used for early identification and better management of ovarian dysfunction. Thus, the current review discusses ovarian dysfunction in PCOS, the involvement of potential genes and epigenetic factors, and miRNAs concerning ovulation and its therapeutic implications.
Collapse
Affiliation(s)
- V Dharani
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| | - S Nishu
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India.
| | - L Hariprasath
- Department of Biochemistry, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| |
Collapse
|
2
|
Luo X, Luo B, Fei L, Zhang Q, Liang X, Chen Y, Zhou X. MS4A superfamily molecules in tumors, Alzheimer's and autoimmune diseases. Front Immunol 2024; 15:1481494. [PMID: 39717774 PMCID: PMC11663944 DOI: 10.3389/fimmu.2024.1481494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3+CD4+ regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B). Early research confirmed that most MS4A molecules function as ion channels that regulate the transport of calcium ions. Recent studies have revealed that some MS4A proteins also function as chaperones that interact with various immune molecules, such as pattern recognition receptors and/or immunoglobulin receptors, to form immune complexes and transmit downstream signals, leading to cell activation, growth, and development. Evidence from preclinical animal models and human genetic studies suggests that the MS4A superfamily plays critical roles in the pathogenesis of various diseases, including cancer, infection, allergies, neurodegenerative diseases and autoimmune diseases. We review recent progress in this field and focus on elucidating the molecular mechanisms by which different MS4A molecules regulate the progression of tumors, Alzheimer's disease, and autoimmune diseases. Therefore, in-depth research into MS4A superfamily members may clarify their ability to act as candidate biomarkers and therapeutic targets for these diseases. Eighteen distinct members of the MS4A (membrane-spanning four-domain subfamily A) superfamily of four-transmembrane proteins have been identified in humans, whereas the MS4A genes are translated into twenty-three different molecules in mice. These proteins are selectively expressed on the surface of various immune cells, such as B cells (MS4A1), macrophages (MS4A4A), mast cells (MS4A2), Foxp3+CD4+ regulatory T cells (MS4A4B), type 3 innate lymphoid cells (TMEM176A and TMEM176B) and colonic epithelial cells (MS4A12). Functionally, most MS4A molecules function as ion channels that regulate the flow of calcium ions [Ca2+] across cell membranes. Recent studies have revealed that some MS4A proteins also act as molecular chaperones and interact with various types of immune receptors, including pattern recognition receptors (PRRs) and immunoglobulin receptors (IgRs), to form signaling complexes, thereby modulating intracellular signaling and cellular activity. Evidence from preclinical animal models and human genetic studies suggests that MS4A proteins play critical roles in various diseases (2). Therefore, we reviewed the recent progress in understanding the role of the MS4A superfamily in diseases, particularly in elucidating its function as a candidate biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xuejiao Luo
- Department of Dermatology, The Affiliated Hospital of the Non-Commissioned Officer (NCO) School, The Army Medical University, Shijiazhuang, Hebei, China
| | - Bin Luo
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Lei Fei
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xinyu Liang
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xueqin Zhou
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Lu H, Jiang H, Li C, Derisoud E, Zhao A, Eriksson G, Lindgren E, Pui HP, Risal S, Pei Y, Maxian T, Ohlsson C, Benrick A, Haider S, Stener-Victorin E, Deng Q. Dissecting the Impact of Maternal Androgen Exposure on Developmental Programming through Targeting the Androgen Receptor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309429. [PMID: 39075722 PMCID: PMC11423211 DOI: 10.1002/advs.202309429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/15/2024] [Indexed: 07/31/2024]
Abstract
Women with polycystic ovary syndrome (PCOS) exhibit sustained elevation in circulating androgens during pregnancy, an independent risk factor linked to pregnancy complications and adverse outcomes in offspring. Yet, further studies are required to understand the effects of elevated androgens on cell type-specific placental dysfunction and fetal development. Therefore, a PCOS-like mouse model induced by continuous androgen exposure is examined. The PCOS-mice exhibited impaired placental and embryonic development, resulting in mid-gestation lethality. Co-treatment with the androgen receptor blocker, flutamide, prevents these phenotypes including germ cell specification. Comprehensive profiling of the placenta by whole-genome bisulfite and RNA sequencing shows a reduced proportion of trophoblast precursors, possibly due to the downregulation of Cdx2 expression. Reduced expression of Gcm1, Synb, and Prl3b1 is associated with reduced syncytiotrophoblasts and sinusoidal trophoblast giant cells, impairs placental labyrinth formation. Importantly, human trophoblast organoids exposed to androgens exhibit analogous changes, showing impaired trophoblast differentiation as a key feature in PCOS-related pregnancy complications. These findings provide new insights into the potential cellular targets for future treatments.
Collapse
Affiliation(s)
- Haojiang Lu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Gustaw Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Han-Pin Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Sanjiv Risal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Theresa Maxian
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
- School of Health Sciences, University of Skövde, Skövde, 54128, Sweden
| | - Sandra Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
4
|
Butler AE, Moin ASM, Sathyapalan T, Atkin SL. A Cross-Sectional Study of Alzheimer-Related Proteins in Women with Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:1158. [PMID: 38256230 PMCID: PMC10816448 DOI: 10.3390/ijms25021158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition in women of reproductive age, and several risk factors found in PCOS are associated with an increased risk of Alzheimer's disease (AD). Proteins increased in AD have been reported to include fibronectin (FN) fragments 3 and 4 (FN1.3 and FN1.4, respectively) and ApoE. We hypothesized that Alzheimer-related proteins would be dysregulated in PCOS because of associated insulin resistance and obesity. In this comparative cross-sectional analysis, aptamer-based SomaScan proteomic analysis for the detection of plasma Alzheimer-related proteins was undertaken in a PCOS biobank of 143 women with PCOS and 97 control women. Amyloid precursor protein (APP) (p < 0.05) and amyloid P-component (APCS) (p < 0.001) were elevated in PCOS, while alpha-synuclein (SNCA) (p < 0.05) was reduced in PCOS. Associations with protective heat shock proteins (HSPs) showed that SNCA positively correlated with HSP90 (p < 0.0001) and HSP60 (p < 0.0001) in both the PCOS and control women. Correlations with markers of inflammation showed that APCS correlated with interleukin 6 (IL6) (p = 0.04), while Apolipoprotein (Apo) E3 correlated with TNF-alpha (p = 0.02). FN, FN1.3, FN1.4 and ApoE were all elevated significantly (p < 0.05). An AD-associated protein pattern with elevated FN, FN1.3, FN1.4 and ApoE was found in PCOS, in addition to elevated APP and reduced SNCA, which was the same as reported for type 2 diabetes (T2D) with, additionally, an elevation in APCS. With the AD biomarker pattern in PCOS being very similar to that in T2D, where there is an association between AD and T2D, this suggests that larger prospective cohort studies are needed in women with PCOS to determine if there is a causal association with AD.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| |
Collapse
|
5
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Alshammary AF, Alshammari AM, Farzan R, Alsobaie SF, Alageel AA, Ali Khan I. A study on the immunological vitality of an inflammatory biomarker explored with rs5743708 polymorphism in TLR2 gene among Saudi women confirmed with polycystic ovarian syndrome. Saudi J Biol Sci 2023; 30:103687. [PMID: 37485450 PMCID: PMC10362453 DOI: 10.1016/j.sjbs.2023.103687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Polycystic ovary syndrome (PCOS) is an ovarian health condition as well as a long-term endocrine dysfunction that affects reproductive-aged women. Toll-like receptor 2 (TLR2) gene was linked to PCOS and chronic inflammation, and the prevalence of obesity was rising in Saudi women. Previous studies on rs5743708 polymorphism were documented in the obesity as well as in PCOS women. Aim In this study, we investigated the molecular role of rs5743708 polymorphism in TLR2 gene among Saudi women diagnosed with PCOS using the Rotterdam criteria. Methods Blood samples were collected from 220 Saudi women in this hospital-based case-control study; 110 were PCOS women and remaining 110 were non-PCOS (control women). Biochemical analysis was performed on serum samples, and molecular analysis was performed on EDTA blood. Genotyping for rs5743708 polymorphism was performed with polymerase chain reaction-restriction fragment length polymorphism analysis. Results In both groups, clinical data was calculated using t-test, which revealed both positive (p < 0.05) and negative (p > 0.05) associations. HWE analysis supported the rs5743708 polymorphism (p < 0.05). In the rs5743708 polymorphism, none of the genotypes, genetic models, or allele frequencies were found to be associated with PCOS and non-PCOS women. However, both ANOVA and regression analyses revealed a positive relationship in PCOS with weight and BMI (p < 0.0001). Conclusion The rs5743708 polymorphism was not associated to PCOS in Saudi women. One of the predictions could be that 42.7% of PCOS and 73.6% of non-PCOS women were obese, and the rs5743708 polymorphism has been linked to both obesity and PCOS in the previous studies. This study suggests screening for additional polymorphisms with a large sample size.
Collapse
Affiliation(s)
- Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Abdulrahman M. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sarah F. Alsobaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Arwa A. Alageel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|