1
|
Jons CK, Cheng D, Dong C, Meany EL, Nassi JJ, Appel EA. Viral Vector Eluting Lenses for Single-Step Targeted Expression of Genetically-Encoded Activity Sensors for in Vivo Microendoscopic Calcium Imaging. Macromol Biosci 2025; 25:e2400359. [PMID: 39283817 DOI: 10.1002/mabi.202400359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 09/25/2024]
Abstract
Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, an adeno-associated virus (AAV)-eluting polymer coating is engineered for gradient refractive index (GRIN) lenses enabling the expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance the understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease.
Collapse
Affiliation(s)
- Carolyn K Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - David Cheng
- Inscopix - A Bruker Company, 1212 Terra Bella Ave. Suite 200, Mountain View, CA, 94043, USA
| | - Changxin Dong
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Emily L Meany
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan J Nassi
- Inscopix - A Bruker Company, 1212 Terra Bella Ave. Suite 200, Mountain View, CA, 94043, USA
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
3
|
Shen Q, Suga S, Moriwaki Y, Du Z, Aizawa E, Okazaki M, Izpisua Belmonte JC, Hirabayashi Y, Suzuki K, Kurita M. Optimization of an adeno-associated viral vector for epidermal keratinocytes in vitro and in vivo. J Dermatol Sci 2024; 115:101-110. [PMID: 39127592 DOI: 10.1016/j.jdermsci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Local gene therapies, including in vivo genome editing, are highly anticipated for the treatment of genetic diseases in skin, especially the epidermis. While the adeno-associated virus (AAV) is a potent vector for in vivo gene delivery, the lack of efficient gene delivery methods has limited its clinical applications. OBJECTIVE To optimize the AAV gene delivery system with higher gene delivery efficiency and specificity for epidermis and keratinocytes (KCs), using AAV capsid and promoter engineering technologies. METHODS AAV variants with mutations in residues reported to be critical to determine the tropism of AAV2 for KCs were generated by site-directed mutagenesis of AAVDJ. The infection efficiency and specificity for KCs of these variants were compared with those of previously reported AAVs considered to be suitable for gene delivery to KCs in vitro and in vivo. Additionally, we generated an epidermis-specific promoter using the most recent short-core promoter and compared its specificity with existing promoters. RESULTS A novel AAVDJ variant capsid termed AAVDJK2 was superior to the existing AAVs in terms of gene transduction efficiency and specificity for epidermis and KCs in vitro and in vivo. A novel tissue-specific promoter, termed the K14 SCP3 promoter, was superior to the existing promoters in terms of gene transduction efficiency and specificity for KCs. CONCLUSION The combination of the AAVDJK2 capsid and K14 SCP3 promoter improves gene delivery to epidermis in vivo and KCs in vitro. The novel AAV system may benefit experimental research and development of new epidermis-targeted gene therapies.
Collapse
Affiliation(s)
- Qi Shen
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuta Moriwaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Zening Du
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Emi Aizawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Suzuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Toyonaka, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Japan.
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
4
|
Liu W, Hu C, Long L, He S, Zhang W, Wang Z, Yang L, Wang Y. An injectable carrier for spatiotemporal and sequential release of therapeutic substances to treat myocardial infarction. J Control Release 2024; 365:29-42. [PMID: 37931807 DOI: 10.1016/j.jconrel.2023.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Myocardial infarction (MI) has become the primary cause of cardiovascular mortality, while the current treatment methods in clinical all have their shortcomings. Injectable biomaterials have emerged as a promising solution for cardiac tissue repair after MI. In this study, we designed a smart multifunctional carrier that could meet the treatment needs of different MI pathological processes by programmatically releasing different therapeutic substances. The carrier could respond to inflammatory microenvironment in the early stage of MI with rapid release of curcumin (Cur), and then sustained release recombinant humanized collagen type III (rhCol III) to treat MI. The rapid release of Cur reduced inflammation and apoptosis in the early stages, while the sustained release of rhCol III promoted angiogenesis and cardiac repair in the later stages. In vitro and in vivo results suggested that the multifunctional carrier could effectively improve cardiac function, promote the repair of infarcted tissue, and inhibit ventricular remodeling by reducing cell apoptosis and inflammation, and promoting angiogenesis in the different pathological processes of MI. Therefore, this programmed-release carrier provides a promising protocol for MI therapy.
Collapse
Affiliation(s)
- Wenqi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shuyi He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wen Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Li Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
5
|
Michida S, Chung UI, Katashima T. Probing the Molecular Mechanism of Viscoelastic Relaxation in Transient Networks. Gels 2023; 9:945. [PMID: 38131931 PMCID: PMC10743357 DOI: 10.3390/gels9120945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels, which have polymer networks through supramolecular and reversible interactions, exhibit various mechanical responsibilities to its surroundings. The influence of the reversible bonds on a hydrogel's macroscopic properties, such as viscoelasticity and dynamics, is not fully understood, preventing further innovative material development. To understand the relationships between the mechanical properties and molecular structures, it is required to clarify the molecular understanding of the networks solely crosslinked by reversible interactions, termed "transient networks". This review introduces our recent progress on the studies on the molecular mechanism of viscoelasticity in transient networks using multiple methods and model materials. Based on the combination of the viscoelasticity and diffusion measurements, the viscoelastic relaxation of transient networks does not undergo the diffusion of polymers, which is not explained by the framework of conventional molecular models for the viscoelasticity of polymers. Then, we show the results of the comparison between the viscoelastic relaxation and binding dynamics of reversible bonds. Viscoelastic relaxation is primarily affected by "dissociation dynamics of the bonds" and "network structures". These results are explained in the framework that the backbone, which is composed of essential chains supporting the stress, is broken by multiple dissociation events. This understanding of molecular dynamics in viscoelasticity will provide the foundation for designing transient networks.
Collapse
Affiliation(s)
- Shota Michida
- Department of Material Engineering, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Ung-il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| |
Collapse
|