1
|
Aliramezani M, Singh B, Constantinidis C, Daliri MR. Low-frequency local field potentials reveal integration of spatial and non-spatial information in prefrontal cortex. Neuroimage 2025; 310:121172. [PMID: 40147602 DOI: 10.1016/j.neuroimage.2025.121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
The prefrontal cortex (PFC) is critical for various aspects of executive functions, particularly working memory. The debate over whether the dorsal and ventral PFC should be viewed as unitary or heterogeneous in working memory has been ongoing. This study explored the specialization of the posterior dorsal, medial dorsal, and posterior ventral subdivisions of the lateral PFC in two macaque monkeys, focusing on the processing of the location and shape of stimuli during working memory tasks. In contrast to previous studies that focused on spike activity analysis, this article employed local field potential (LFP) power analysis. Results revealed that during the working memory periods, both the dorsal and ventral PFC exhibited significantly higher LFP power for feature stimuli compared to spatial stimuli in the low-frequency bands (∼2-23 Hz). Additionally, the impact of matching versus non-matching stimuli was consistent with repetition suppression in the medial dorsal and posterior ventral regions during the working memory period within the same frequency range. The major modulation of LFP power linked to incorrect decisions made by the monkeys was a sharp reduction in low-frequency LFP power. The similar LFP power patterns in the PFC subdivisions for spatial and feature stimuli throughout the analysis suggested that spatial and non-spatial inputs are integrated by the PFC, revealed by the low-frequency components of the LFP.
Collapse
Affiliation(s)
- Mohammad Aliramezani
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Mohammad Reza Daliri
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Neuroscience & Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran; Lead Contact, Iran.
| |
Collapse
|
2
|
Liu Y, Chen S, Li J, Song Z, Wang J, Ren X, Qian Y, Ouyang W. Effects of high-intensity interval training and moderate-intensity continuous training on neural dynamics and firing in the CA1-MEC region of mice. J Appl Physiol (1985) 2025; 138:31-44. [PMID: 39589768 DOI: 10.1152/japplphysiol.00778.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The aim of this study is to investigate the differential impacts of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on neural circuit dynamics and neuronal firing in the hippocampal CA1 subregion (CA1) region and medial entorhinal cortex (MEC) of mice. Forty-two male ICR mice were randomized into control, HIIT, and MICT groups. Electrophysiological recordings were performed pre- and postintervention to assess neural circuit dynamics and neuronal firing patterns in the CA1-MEC pathway. Both exercise protocols increased local field potential (LFP) coherence, with MICT showing a more pronounced effect on δ and γ coherences (P < 0.05). Both modalities reduced δ power spectral density (PSD) (HIIT, P < 0.05; MICT, P < 0.01) and elevated θ, β, and γ PSDs. Neuronal firing frequency improved in both CA1 and MEC following HIIT and MICT (P < 0.05). HIIT enhanced firing regularity in CA1 (P < 0.05), whereas MICT improved regularity in both regions (P < 0.05). Both protocols reduced firing latency (HIIT, P < 0.05; MICT, P < 0.01) and enhanced burst firing ratio, interburst interval (IBI), burst duration (BD), and LFP phase locking (P < 0.05 or P < 0.01). Notably, MICT significantly improved spatial working memory and novel recognition abilities, as evidenced by increased novel arm time, entries, and preference index (P < 0.01). This study reveals that both HIIT and MICT positively impact neural processing and information integration in the CA1-MEC network of mice. Notably, MICT exhibits a more pronounced impact on neural functional connectivity and cognitive function compared with HIIT. These findings, coupled with the similarities in hippocampal electrophysiological characteristics between rodents and humans, suggest potential exercise-mediated neural plasticity and cognitive benefits in humans.NEW & NOTEWORTHY This study is the first to investigate HIIT and MICT's effects on neural activity in the mouse CA1-MEC circuit, demonstrating that exercise modulates processing, enhances integration, and boosts cognitive performance. Due to similar hippocampal electrophysiology in rodents and humans during movement and navigation, our findings suggest implications for human brain neural changes, advancing the understanding of neurophysiological mechanisms underlying exercise-cognition interactions and informing exercise recommendations for cognitive health.
Collapse
Affiliation(s)
- Yuncheng Liu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Shiqiang Chen
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Junliang Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zengfei Song
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Jihui Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Yongdong Qian
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Lao W, Mao H, Zhong Y, Wang J, Ouyang W. Comparison of alterations in local field potentials and neuronal firing in mouse M1 and CA1 associated with central fatigue induced by high-intensity interval training and moderate-intensity continuous training. Front Neurosci 2024; 18:1428901. [PMID: 39211437 PMCID: PMC11357951 DOI: 10.3389/fnins.2024.1428901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The mechanisms underlying central fatigue (CF) induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are still not fully understood. Methods In order to explore the effects of these exercises on the functioning of cortical and subcortical neural networks, this study investigated the effects of HIIT and MICT on local field potential (LFP) and neuronal firing in the mouse primary motor cortex (M1) and hippocampal CA1 areas. HIIT and MICT were performed on C57BL/6 mice, and simultaneous multichannel recordings were conducted in the M1 motor cortex and CA1 hippocampal region. Results A range of responses were elicited, including a decrease in coherence values of LFP rhythms in both areas, and an increase in slow and a decrease in fast power spectral density (PSD, n = 7-9) respectively. HIIT/MICT also decreased the gravity frequency (GF, n = 7-9) in M1 and CA1. Both exercises decreased overall firing rates, increased time lag of firing, declined burst firing rates and the number of spikes in burst, and reduced burst duration (BD) in M1 and CA1 (n = 7-9). While several neuronal firing properties showed a recovery tendency, the alterations of LFP parameters were more sustained during the 10-min post-HIIT/MICT period. MICT appeared to be more effective than HIIT in affecting LFP parameters, neuronal firing rate, and burst firing properties, particularly in CA1. Both exercises significantly affected neural network activities and local neuronal firing in M1 and CA1, with MICT associated with a more substantial and consistent suppression of functional integration between M1 and CA1. Conclusion Our study provides valuable insights into the neural mechanisms involved in exercise-induced central fatigue by examining the changes in functional connectivity and coordination between the M1 and CA1 regions. These findings may assist individuals engaged in exercise in optimizing their exercise intensity and timing to enhance performance and prevent excessive fatigue. Additionally, the findings may have clinical implications for the development of interventions aimed at managing conditions related to exercise-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
4
|
Singh B, Wang Z, Madiah LM, Gatti SE, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Bick SK, Roberson SW, Constantinidis C. Brain-wide human oscillatory local field potential activity during visual working memory. iScience 2024; 27:109130. [PMID: 38380249 PMCID: PMC10877957 DOI: 10.1016/j.isci.2024.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Oscillatory activity in the local field potential (LFP) is thought to be a marker of cognitive processes. To understand how it differentiates tasks and brain areas in humans, we recorded LFPs in 15 adults with intracranial depth electrodes, as they performed visual-spatial and shape working memory tasks. Stimulus appearance produced widespread, broad-band activation, including in occipital, parietal, temporal, insular, and prefrontal cortex, and the amygdala and hippocampus. Occipital cortex was characterized by most elevated power in the high-gamma (100-150 Hz) range during the visual stimulus presentation. The most consistent feature of the delay period was a systematic pattern of modulation in the beta frequency (16-40 Hz), which included a decrease in power of variable timing across areas, and rebound during the delay period. These results reveal the widespread nature of oscillatory activity across a broad brain network and region-specific signatures of oscillatory processes associated with visual working memory.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Leen M. Madiah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - S. Elizabeth Gatti
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jenna N. Fulton
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Graham W. Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rui Li
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benoit M. Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah K. Bick
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Singh B, Wang Z, Madiah LM, Gatti SE, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Bick SK, Roberson SW, Constantinidis C. Brain-wide human oscillatory LFP activity during visual working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556554. [PMID: 37732263 PMCID: PMC10508766 DOI: 10.1101/2023.09.06.556554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Oscillatory activity is thought to be a marker of cognitive processes, although its role and distribution across the brain during working memory has been a matter of debate. To understand how oscillatory activity differentiates tasks and brain areas in humans, we recorded local field potentials (LFPs) in 12 adults as they performed visual-spatial and shape-matching memory tasks. Tasks were designed to engage working memory processes at a range of delay intervals between stimulus delivery and response initiation. LFPs were recorded using intracranial depth electrodes implanted to localize seizures for management of intractable epilepsy. Task-related LFP power analyses revealed an extensive network of cortical regions that were activated during the presentation of visual stimuli and during their maintenance in working memory, including occipital, parietal, temporal, insular, and prefrontal cortical areas, and subcortical structures including the amygdala and hippocampus. Across most brain areas, the appearance of a stimulus produced broadband power increase, while gamma power was evident during the delay interval of the working memory task. Notable differences between areas included that occipital cortex was characterized by elevated power in the high gamma (100-150 Hz) range during the 500 ms of visual stimulus presentation, which was less pronounced or absent in other areas. A decrease in power centered in beta frequency (16-40 Hz) was also observed after the stimulus presentation, whose magnitude differed across areas. These results reveal the interplay of oscillatory activity across a broad network, and region-specific signatures of oscillatory processes associated with visual working memory.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University
| | | | - Leen M Madiah
- Department of Biomedical Engineering, Vanderbilt University
| | | | - Jenna N Fulton
- Department of Neurology, Vanderbilt University Medical Center
| | - Graham W Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Rui Li
- Department of Electrical and Computer Engineering, Vanderbilt University
| | - Benoit M Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Sarah K Bick
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurology, Vanderbilt University Medical Center
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University
- Neuroscience Program, Vanderbilt University
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| |
Collapse
|