1
|
Wang Y, Wang B, Zou J, Wu A, Liu Y, Wan Y, Luo J, Wu J. Capsule neural network and its applications in drug discovery. iScience 2025; 28:112217. [PMID: 40241764 PMCID: PMC12002614 DOI: 10.1016/j.isci.2025.112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Deep learning holds great promise in drug discovery, yet its application is hindered by high labeling costs and limited datasets. Developing algorithms that effectively learn from sparsely labeled data is crucial. Capsule networks (CapsNet), introduced in 2017, solve the spatial information loss in traditional neural networks and excel in handling small datasets by capturing spatial hierarchical relationships among features. This capability makes CapsNet particularly promising for drug discovery, where data scarcity is a common challenge. Various modified CapsNet architectures have been successfully applied to drug design and discovery tasks. This review provides a comprehensive analysis of CapsNet's theoretical foundations, its current applications in drug discovery, and its performance in addressing key challenges in the field. Additionally, the study highlights the limitations of CapsNet and outlines potential future research directions to further enhance its utility in drug discovery, offering valuable insights for researchers in both computational and pharmaceutical sciences.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jun Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Mehta S, Wagner R, Do KT, Johnson JE, Yu F, Jubenville T, Richards K, Coleman S, Popescu FE, Nesvizhskii AI, Largaespada DA, Jagtap PD, Griffin TJ. A modular, Galaxy-based immunopeptidogenomic (iPepGen) analysis pipeline for discovery, verification, and prioritization of candidate cancer neoantigen peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647596. [PMID: 40291680 PMCID: PMC12026984 DOI: 10.1101/2025.04.07.647596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Characterizing peptide antigens, processed from tumor-specific proteoforms, and bound to the major histocompatibility complex, is critical for immuno-oncology research. Next-generation sequencing predicts candidate neoantigen peptides derived from DNA mutations and/or RNA transcripts coding proteoform sequences that differ from the reference proteome. Mass spectrometry (MS)-based immunopeptidomics identifies predicted, MHC-bound neoantigen peptides and other tumor antigens. This "immunopeptidogenomic" approach requires multi-omic software integration, challenging researchers with limited bioinformatics expertise and resources. As a solution, we developed the immunopeptidogenomic (iPepGen) pipeline in the Galaxy ecosystem. iPepGen is composed of five core workflow modules, available via publicly accessible, scalable Galaxy instances, accompanied by training resources to empower community adoption. Findings Using representative multi-omic data from malignant peripheral nerve sheath tumors, we demonstrate the operation of iPepGen modules with these functions: 1) Predict neoantigen candidates from sequencing data and generate customized protein sequence databases, including reference and non-reference neoantigen candidate sequences; 2) Discover neoantigen peptide candidates by sequence database searching of tandem mass spectrometry (MS/MS) immunopeptidomics data; 3) Verify discovered peptide candidates through a secondary peptide-centric evaluation method against the MS/MS dataset; 4) Visualize and classify the nature of verified neoantigen peptides encoded by the genome and/or transcriptome; 5) Prioritize neoantigens for further exploration and empirical validation. Conclusions We demonstrate the effectiveness of the iPepGen pipeline for candidate neoantigen discovery and characterization. With tools, workflows, and training resources available in the open Galaxy ecosystem, iPepGen should provide cancer researchers with a flexible and accessible informatics resource tailored to accelerating immuno-oncology studies.
Collapse
|
3
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
T D, G SB, Hebbar SR, Selvam PK, Vasudevan K. VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy. Immunogenetics 2024; 77:8. [PMID: 39644341 DOI: 10.1007/s00251-024-01361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML's robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Dhanushkumar T
- Department of Biotechnology, School of Applied Sciences, REVA University, 560064, Bengaluru, India
| | - Sunila B G
- Department of Biotechnology, School of Applied Sciences, REVA University, 560064, Bengaluru, India
| | - Sripad Rama Hebbar
- School of Computer Science and Applications, REVA University, 560064, Bengaluru, India
| | - Prasanna Kumar Selvam
- Manipal Academy of Higher Education (MAHE), 576104, Manipal, India
- Institute of Bioinformatics, International Technology Park, 560066, Bangalore, India
| | - Karthick Vasudevan
- Manipal Academy of Higher Education (MAHE), 576104, Manipal, India.
- Institute of Bioinformatics, International Technology Park, 560066, Bangalore, India.
| |
Collapse
|
5
|
Asediya VS, Anjaria PA, Mathakiya RA, Koringa PG, Nayak JB, Bisht D, Fulmali D, Patel VA, Desai DN. Vaccine development using artificial intelligence and machine learning: A review. Int J Biol Macromol 2024; 282:136643. [PMID: 39426778 DOI: 10.1016/j.ijbiomac.2024.136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The COVID-19 pandemic has underscored the critical importance of effective vaccines, yet their development is a challenging and demanding process. It requires identifying antigens that elicit protective immunity, selecting adjuvants that enhance immunogenicity, and designing delivery systems that ensure optimal efficacy. Artificial intelligence (AI) can facilitate this process by using machine learning methods to analyze large and diverse datasets, suggest novel vaccine candidates, and refine their design and predict their performance. This review explores how AI can be applied to various aspects of vaccine development, such as predicting immune response from protein sequences, discovering adjuvants, optimizing vaccine doses, modeling vaccine supply chains, and predicting protein structures. We also address the challenges and ethical issues that emerge from the use of AI in vaccine development, such as data privacy, algorithmic bias, and health data sensitivity. We contend that AI has immense potential to accelerate vaccine development and respond to future pandemics, but it also requires careful attention to the quality and validity of the data and methods used.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepanker Bisht
- Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | | |
Collapse
|
6
|
Niu R, Wang J, Li Y, Zhou J, Guo Y, Shang X. Attention-aware differential learning for predicting peptide-MHC class I binding and T cell receptor recognition. Brief Bioinform 2024; 26:bbaf038. [PMID: 39883517 PMCID: PMC11781218 DOI: 10.1093/bib/bbaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
The identification of neoantigens is crucial for advancing vaccines, diagnostics, and immunotherapies. Despite this importance, a fundamental question remains: how to model the presentation of neoantigens by major histocompatibility complex class I molecules and the recognition of the peptide-MHC-I (pMHC-I) complex by T cell receptors (TCRs). Accurate prediction of pMHC-I binding and TCR recognition remains a significant computational challenge in immunology due to intricate binding motifs and the long-tail distribution of known binding pairs in public databases. Here, we propose an attention-aware framework comprising TranspMHC for pMHC-I binding prediction and TransTCR for TCR-pMHC-I recognition prediction. Leveraging the attention mechanism, TranspMHC surpasses existing algorithms on independent datasets at both pan-specific and allele-specific levels. For TCR-pMHC-I recognition, TransTCR incorporates transfer learning and a differential learning strategy, demonstrating superior performance and enhanced generalization on independent datasets compared to existing methods. Furthermore, we identify key amino acids associated with binding motifs of peptides and TCRs that facilitate pMHC-I and TCR-pMHC-I binding, indicating the potential interpretability of our proposed framework.
Collapse
Affiliation(s)
- Rui Niu
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 Shaanxi, China
| | - Jingwei Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 Shaanxi, China
| | - Yanli Li
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Jiren Zhou
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 Shaanxi, China
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Yang Guo
- School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 Shaanxi, China
| |
Collapse
|
7
|
Kushwaha A, Duroux P, Giudicelli V, Todorov K, Kossida S. IMGT/RobustpMHC: robust training for class-I MHC peptide binding prediction. Brief Bioinform 2024; 25:bbae552. [PMID: 39504482 PMCID: PMC11540059 DOI: 10.1093/bib/bbae552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
The accurate prediction of peptide-major histocompatibility complex (MHC) class I binding probabilities is a critical endeavor in immunoinformatics, with broad implications for vaccine development and immunotherapies. While recent deep neural network based approaches have showcased promise in peptide-MHC (pMHC) prediction, they have two shortcomings: (i) they rely on hand-crafted pseudo-sequence extraction, (ii) they do not generalize well to different datasets, which limits the practicality of these approaches. While existing methods rely on a 34 amino acid pseudo-sequence, our findings uncover the involvement of 147 positions in direct interactions between MHC and peptide. We further show that neural architectures can learn the intricacies of pMHC binding using even full sequences. To this end, we present PerceiverpMHC that is able to learn accurate representations on full-sequences by leveraging efficient transformer based architectures. Additionally, we propose IMGT/RobustpMHC that harnesses the potential of unlabeled data in improving the robustness of pMHC binding predictions through a self-supervised learning strategy. We extensively evaluate RobustpMHC on eight different datasets and showcase an overall improvement of over 6% in binding prediction accuracy compared to state-of-the-art approaches. We compile CrystalIMGT, a crystallography-verified dataset presenting a challenge to existing approaches due to significantly different pMHC distributions. Finally, to mitigate this distribution gap, we further develop a transfer learning pipeline.
Collapse
Affiliation(s)
- Anjana Kushwaha
- IMGT®, The International ImMunoGeneTics Information System®, Montpellier, France
- Institute of Human Genetics (IGH), Montpellier, France
- University of Montpellier (UM), Montpellier, France
- National Center for Scientific Research (CNRS), France
| | - Patrice Duroux
- IMGT®, The International ImMunoGeneTics Information System®, Montpellier, France
- Institute of Human Genetics (IGH), Montpellier, France
- National Center for Scientific Research (CNRS), France
| | - Véronique Giudicelli
- IMGT®, The International ImMunoGeneTics Information System®, Montpellier, France
- Institute of Human Genetics (IGH), Montpellier, France
- University of Montpellier (UM), Montpellier, France
- National Center for Scientific Research (CNRS), France
| | - Konstantin Todorov
- LIRMM, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Montpellier, France
| | - Sofia Kossida
- IMGT®, The International ImMunoGeneTics Information System®, Montpellier, France
- Institute of Human Genetics (IGH), Montpellier, France
- University of Montpellier (UM), Montpellier, France
- National Center for Scientific Research (CNRS), France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
8
|
Machaca V, Goyzueta V, Cruz MG, Sejje E, Pilco LM, López J, Túpac Y. Transformers meets neoantigen detection: a systematic literature review. J Integr Bioinform 2024; 21:jib-2023-0043. [PMID: 38960869 PMCID: PMC11377031 DOI: 10.1515/jib-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/20/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.
Collapse
Affiliation(s)
| | | | | | - Erika Sejje
- Universidad Nacional de San Agustín, Arequipa, Perú
| | | | | | - Yván Túpac
- 187038 Universidad Católica San Pablo , Arequipa, Perú
| |
Collapse
|
9
|
Bulashevska A, Nacsa Z, Lang F, Braun M, Machyna M, Diken M, Childs L, König R. Artificial intelligence and neoantigens: paving the path for precision cancer immunotherapy. Front Immunol 2024; 15:1394003. [PMID: 38868767 PMCID: PMC11167095 DOI: 10.3389/fimmu.2024.1394003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Alla Bulashevska
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Zsófia Nacsa
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Franziska Lang
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Markus Braun
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Martin Machyna
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Liam Childs
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
10
|
Zhang L, Song W, Zhu T, Liu Y, Chen W, Cao Y. ConvNeXt-MHC: improving MHC-peptide affinity prediction by structure-derived degenerate coding and the ConvNeXt model. Brief Bioinform 2024; 25:bbae133. [PMID: 38561979 PMCID: PMC10985285 DOI: 10.1093/bib/bbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/11/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Peptide binding to major histocompatibility complex (MHC) proteins plays a critical role in T-cell recognition and the specificity of the immune response. Experimental validation such peptides is extremely resource-intensive. As a result, accurate computational prediction of binding peptides is highly important, particularly in the context of cancer immunotherapy applications, such as the identification of neoantigens. In recent years, there is a significant need to continually improve the existing prediction methods to meet the demands of this field. We developed ConvNeXt-MHC, a method for predicting MHC-I-peptide binding affinity. It introduces a degenerate encoding approach to enhance well-established panspecific methods and integrates transfer learning and semi-supervised learning methods into the cutting-edge deep learning framework ConvNeXt. Comprehensive benchmark results demonstrate that ConvNeXt-MHC outperforms state-of-the-art methods in terms of accuracy. We expect that ConvNeXt-MHC will help us foster new discoveries in the field of immunoinformatics in the distant future. We constructed a user-friendly website at http://www.combio-lezhang.online/predict/, where users can access our data and application.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Wenkai Song
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Tinghao Zhu
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Nuclear Power Institute of China, Chengdu 610213, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China
| |
Collapse
|
11
|
Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R. Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2023; 14:1252166. [PMID: 38034587 PMCID: PMC10684705 DOI: 10.3389/fpls.2023.1252166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Recombinant biopharmaceuticals including antigens, antibodies, hormones, cytokines, single-chain variable fragments, and peptides have been used as vaccines, diagnostics and therapeutics. Plant molecular pharming is a robust platform that uses plants as an expression system to produce simple and complex recombinant biopharmaceuticals on a large scale. Plant system has several advantages over other host systems such as humanized expression, glycosylation, scalability, reduced risk of human or animal pathogenic contaminants, rapid and cost-effective production. Despite many advantages, the expression of recombinant proteins in plant system is hindered by some factors such as non-human post-translational modifications, protein misfolding, conformation changes and instability. Artificial intelligence (AI) plays a vital role in various fields of biotechnology and in the aspect of plant molecular pharming, a significant increase in yield and stability can be achieved with the intervention of AI-based multi-approach to overcome the hindrance factors. Current limitations of plant-based recombinant biopharmaceutical production can be circumvented with the aid of synthetic biology tools and AI algorithms in plant-based glycan engineering for protein folding, stability, viability, catalytic activity and organelle targeting. The AI models, including but not limited to, neural network, support vector machines, linear regression, Gaussian process and regressor ensemble, work by predicting the training and experimental data sets to design and validate the protein structures thereby optimizing properties such as thermostability, catalytic activity, antibody affinity, and protein folding. This review focuses on, integrating systems engineering approaches and AI-based machine learning and deep learning algorithms in protein engineering and host engineering to augment protein production in plant systems to meet the ever-expanding therapeutics market.
Collapse
Affiliation(s)
- Subramanian Parthiban
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thandarvalli Vijeesh
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thashanamoorthi Gayathri
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Balamurugan Shanmugaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
12
|
Ma C, Wolfinger R. A prediction model for blood-brain barrier penetrating peptides based on masked peptide transformers with dynamic routing. Brief Bioinform 2023; 24:bbad399. [PMID: 37985456 DOI: 10.1093/bib/bbad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Blood-brain barrier penetrating peptides (BBBPs) are short peptide sequences that possess the ability to traverse the selective blood-brain interface, making them valuable drug candidates or carriers for various payloads. However, the in vivo or in vitro validation of BBBPs is resource-intensive and time-consuming, driving the need for accurate in silico prediction methods. Unfortunately, the scarcity of experimentally validated BBBPs hinders the efficacy of current machine-learning approaches in generating reliable predictions. In this paper, we present DeepB3P3, a novel framework for BBBPs prediction. Our contribution encompasses four key aspects. Firstly, we propose a novel deep learning model consisting of a transformer encoder layer, a convolutional network backbone, and a capsule network classification head. This integrated architecture effectively learns representative features from peptide sequences. Secondly, we introduce masked peptides as a powerful data augmentation technique to compensate for small training set sizes in BBBP prediction. Thirdly, we develop a novel threshold-tuning method to handle imbalanced data by approximating the optimal decision threshold using the training set. Lastly, DeepB3P3 provides an accurate estimation of the uncertainty level associated with each prediction. Through extensive experiments, we demonstrate that DeepB3P3 achieves state-of-the-art accuracy of up to 98.31% on a benchmarking dataset, solidifying its potential as a promising computational tool for the prediction and discovery of BBBPs.
Collapse
Affiliation(s)
- Chunwei Ma
- JMP Statistical Discovery, LLC, Cary, 27513, NC, USA
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, 14260, NY, USA
| | | |
Collapse
|