1
|
Xie Y, Wu R, Li H, Dong W, Zhou G, Zhao H. Statistical methods for assessing the effects of de novo variants on birth defects. Hum Genomics 2024; 18:25. [PMID: 38486307 PMCID: PMC10938830 DOI: 10.1186/s40246-024-00590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
With the development of next-generation sequencing technology, de novo variants (DNVs) with deleterious effects can be identified and investigated for their effects on birth defects such as congenital heart disease (CHD). However, statistical power is still limited for such studies because of the small sample size due to the high cost of recruiting and sequencing samples and the low occurrence of DNVs. DNV analysis is further complicated by genetic heterogeneity across diseased individuals. Therefore, it is critical to jointly analyze DNVs with other types of genomic/biological information to improve statistical power to identify genes associated with birth defects. In this review, we discuss the general workflow, recent developments in statistical methods, and future directions for DNV analysis.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ruoxuan Wu
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Geyu Zhou
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Balachandran S, Prada-Medina CA, Mensah MA, Kakar N, Nagel I, Pozojevic J, Audain E, Hitz MP, Kircher M, Sreenivasan VKA, Spielmann M. STIGMA: Single-cell tissue-specific gene prioritization using machine learning. Am J Hum Genet 2024; 111:338-349. [PMID: 38228144 PMCID: PMC10870135 DOI: 10.1016/j.ajhg.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.
Collapse
Affiliation(s)
- Saranya Balachandran
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Cesar A Prada-Medina
- Human Molecular Genetics Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin A Mensah
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; BIH Charité Digital Clinician Scientist Program, BIH Biomedical Innovation Academy, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Naseebullah Kakar
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany; Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Inga Nagel
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Jelena Pozojevic
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Enrique Audain
- Institute of Medical Genetics, Carl von Ossietzky University, 26129 Oldenburg, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck; Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc-Phillip Hitz
- Institute of Medical Genetics, Carl von Ossietzky University, 26129 Oldenburg, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck; Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Martin Kircher
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Varun K A Sreenivasan
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany.
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany; Human Molecular Genetics Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck.
| |
Collapse
|