1
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez ER, Turmon AC, Cao J, Backus KM. Delineating cysteine-reactive compound modulation of cellular proteostasis processes. Nat Chem Biol 2025; 21:693-705. [PMID: 39448844 DOI: 10.1038/s41589-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Covalent modulators and covalent degrader molecules have emerged as drug modalities with tremendous therapeutic potential. Toward realizing this potential, mass spectrometry-based chemoproteomic screens have generated proteome-wide maps of potential druggable cysteine residues. However, beyond these direct cysteine-target maps, the full scope of direct and indirect activities of these molecules on cellular processes and how such activities contribute to reported modes of action, such as degrader activity, remains to be fully understood. Using chemoproteomics, we identified a cysteine-reactive small molecule degrader of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host protein disulfide isomerases. This degrader activity was further potentiated by generalized electrophile-induced global protein ubiquitylation, proteasome activation and widespread aggregation and depletion of host proteins, including the formation of stress granules. Collectively, we delineate the wide-ranging impacts of cysteine-reactive electrophilic compounds on cellular proteostasis processes.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Emil R Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Jian Cao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Zhang D, Li J, Zhang C, Xue J, Li P, Shang K, Zhang X, Lang B. The deubiquitinating enzyme USP35 regulates the stability of NRF2 protein. Open Life Sci 2024; 19:20220935. [PMID: 39156988 PMCID: PMC11330172 DOI: 10.1515/biol-2022-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Many cancers exhibit resistance to chemotherapy, resulting in a poor prognosis. The transcription factor NRF2, activated in response to cellular antioxidants, plays a crucial role in cell survival, proliferation, and resistance to chemotherapy. This factor may serve as a promising target for therapeutic interventions in esophageal carcinoma. Recent research suggests that NRF2 activity is modulated by ubiquitination mediated by the KEAP1-CUL3 E3 ligase complex, highlighting the importance of deubiquitination. However, the specific deubiquitinase responsible for regulating NRF2 in esophageal cancer remains unknown. In this study, a novel regulator of the NRF2 protein, Ubiquitin-Specific Protease 35 (USP35), has been identified. Mechanistically, USP35 modulates NRF2 stability through enzymatic deubiquitination. USP35 interacts with NRF2 and facilitates its deubiquitination. Knockdown of USP35 leads to a notable increase in NRF2 levels and enhances the sensitivity of cells to chemotherapy. These findings suggest that the USP35-NRF2 axis is a key player in the regulation of therapeutic strategies for esophageal cancer.
Collapse
Affiliation(s)
- Dian Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Jiawen Li
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Chao Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Jinliang Xue
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Peihao Li
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Kai Shang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Xiao Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Baoping Lang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| |
Collapse
|
3
|
Dong J, Liu W, Liu W, Wen Y, Liu Q, Wang H, Xiang G, Liu Y, Hao H. Acute lung injury: a view from the perspective of necroptosis. Inflamm Res 2024; 73:997-1018. [PMID: 38615296 DOI: 10.1007/s00011-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.
Collapse
Affiliation(s)
- Jinyan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Wenli Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yuqi Wen
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Qingkuo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongtao Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Guohan Xiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
4
|
Chen D, Chen Y, Feng J, Huang W, Han Z, Liu Y, Lin Q, Li L, Lin Y. Guanine nucleotide exchange factor RABGEF1 facilitates TNF-induced necroptosis by targeting cIAP1. Biochem Biophys Res Commun 2024; 703:149669. [PMID: 38377943 DOI: 10.1016/j.bbrc.2024.149669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Necroptosis is a form of regulated cell death that depends on the receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL). The molecular mechanisms underlying distinct instances of necroptosis have only recently begun to emerge. In the present study, we characterized RABGEF1 as a positive regulator of RIPK1/RIPK3 activation in vitro. Based on the overexpression and knockdown experiments, we determined that RABGEF1 accelerated the phosphorylation of RIPK1 and promoted necrosome formation in L929 cells. The pro-necrotic effect of RABGEF1 is associated with its E3 ubiquitin ligase activity and guanine nucleotide exchange factor (GEF) activity. We further confirmed that RABGEF1 interacts with cIAP1 protein by inhibiting its function and plays a regulatory role in necroptosis, which can be abolished by treatment with the antagonist Smac mimetic (SM)-164. In conclusion, our study highlights a potential and novel role of RABGEF1 in promoting TNF-induced cell necrosis.
Collapse
Affiliation(s)
- Danni Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yushi Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jianting Feng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenyang Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeteng Han
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuanyuan Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiaofa Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lisheng Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, China.
| | - Yingying Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Yu HY, Chen YS, Wang Y, Zou ZB, Xie MM, Li Y, Li LS, Meng DL, Wu LQ, Yang XW. Anti-necroptosis and anti-ferroptosis compounds from the Deep-Sea-Derived fungus Aspergillus sp. MCCC 3A00392. Bioorg Chem 2024; 144:107175. [PMID: 38335757 DOI: 10.1016/j.bioorg.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Eight undescribed (1-8) and 46 known compounds (9-54) were isolated from the deep-sea-derived Aspergillus sp. MCCC 3A00392. Compounds 1-3 were three novel oxoindolo diterpenoids, 4-6 were three bisabolane sesquiterpenoids, while 7 and 8 were two monocyclic cyclopropanes. Their structures were established by exhaustive analyses of the HRESIMS, NMR, and theoretical calculations of the NMR data and ECD spectra. Compounds 10, 33, 38, and 39 were able to inhibit tumor necrosis factor (TNF)-induced necroptosis in murine L929 cell lines. Functional experiments verified that compounds 10 and 39 inhibited necroptosis by downregulating the phosphorylation of RIPK3 and MLKL. Moreover, compound 39 also reduced the phosphorylation of RIPK1. Compounds 10, 33, and 34 displayed potent inhibitory activities against RSL-3 induced ferroptosis with the EC50 value of 3.0 μM, 0.4 μM, and 0.1 μM, respectively. Compound 10 inhibited ferroptosis by the downregulation of HMOX1, while compounds 33 and 34 inhibited ferroptosis through regulation of NRF2/SLC7A11/GCLM axis. However, these compounds only showed weak effect in either the necroptosis or ferroptosis relative mouse disease models. Further studies of pharmacokinetics and pharmacodynamics might improve their in vivo bioactivities.
Collapse
Affiliation(s)
- Hao-Yu Yu
- School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu-Shi Chen
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - You Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Li-Sheng Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China
| | - Da-Li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Lan-Qin Wu
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China.
| | - Xian-Wen Yang
- School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
6
|
Li J, Liu X, Liu Y, Huang F, Liang J, Lin Y, Hu F, Feng J, Han Z, Chen Y, Chen X, Lin Q, Wu L, Li L. Saracatinib inhibits necroptosis and ameliorates psoriatic inflammation by targeting MLKL. Cell Death Dis 2024; 15:122. [PMID: 38331847 PMCID: PMC10853205 DOI: 10.1038/s41419-024-06514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Necroptosis is a kind of programmed cell death that causes the release of damage-associated molecular patterns and inflammatory disease including skin inflammation. Activation of receptor-interacting serine/threonine kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) is the hallmark of tumour necrosis factor α (TNF)-induced necroptosis. Here, we screened a small-molecule compound library and found that saracatinib inhibited TNF-induced necroptosis. By targeting MLKL, Saracatinib interfered with the phosphorylation, translocation, and oligomerization of MLKL induced by TNF. Consistently, mutation of the saracatinib-binding site of MLKL reduced the inhibitory effect of saracatinib on TNF-induced necroptosis. In an imiquimod (IMQ)-induced psoriasis mouse model, saracatinib effectively blocked MLKL phosphorylation and inflammatory responses in vivo. Taken together, these findings indicate that saracatinib inhibits necroptosis by targeting MLKL, providing a potential therapeutic approach for skin inflammation-related diseases such as psoriasis.
Collapse
Affiliation(s)
- Jingyi Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xingfeng Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuanyuan Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fangmin Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiankun Liang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yingying Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fen Hu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jianting Feng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeteng Han
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yushi Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xuan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiaofa Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lanqin Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Lisheng Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, China.
| |
Collapse
|
7
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez E, Turmon AC, Cao J, Backus K. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564067. [PMID: 38014036 PMCID: PMC10680658 DOI: 10.1101/2023.10.30.564067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Protein homeostasis is tightly regulated, with damaged or misfolded proteins quickly eliminated by the proteasome and autophagosome pathways. By co-opting these processes, targeted protein degradation technologies enable pharmacological manipulation of protein abundance. Recently, cysteine-reactive molecules have been added to the degrader toolbox, which offer the benefit of unlocking the therapeutic potential of 'undruggable' protein targets. The proteome-wide impact of these molecules remains to be fully understood and given the general reactivity of many classes of cysteine-reactive electrophiles, on- and off-target effects are likely. Using chemical proteomics, we identified a cysteine-reactive small molecule degrader of the SARS-CoV-2 nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host chaperones together with activation of global cell stress response pathways. We find that cysteine-reactive electrophiles increase global protein ubiquitylation, trigger proteasome activation, and result in widespread aggregation and depletion of host proteins, including components of the nuclear pore complex. Formation of stress granules was also found to be a remarkably ubiquitous cellular response to nearly all cysteine-reactive compounds and degraders. Collectively, our study sheds light on complexities of covalent target protein degradation and highlights untapped opportunities in manipulating and characterizing proteostasis processes via deciphering the cysteine-centric regulation of stress response pathways.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Emil Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Jian Cao
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Keriann Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|