1
|
Roumestand C, Dudas E, Puglisi R, Calió A, Barthe P, Temussi PA, Pastore A. Understanding the Relationship between Pressure and Temperature Unfolding of Proteins. JACS AU 2025; 5:1940-1955. [PMID: 40313814 PMCID: PMC12042054 DOI: 10.1021/jacsau.5c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 05/03/2025]
Abstract
Proteins unfold under different environmental insults, among which are heat, cold, high pressure, and chaotropic agents. Understanding the mechanisms that determine unfolding under each of these conditions is an important problem that directly relates to the physical forces that determine the three-dimensional structure of a protein. Here, we studied a residue-specific description of the unfolding transitions of marginally stable yeast protein Yfh1 using high-pressure nuclear magnetic resonance. We compared the cold, heat, and pressure unfolded states and demonstrated what has up to now been only a hypothesis: the pressure-unfolded spectrum at room temperature shares features in common with that at low but not at high temperature and room pressure, suggesting a tighter similarity of the mechanisms and a similar role of hydration in these two processes. By exploring the phase diagram of the protein and mapping unfolding onto the three-dimensional structure of the protein, we also show that the pressure-induced unfolding pathways at low and high temperatures differ, suggesting a synergic mechanism between pressure- and temperature-induced denaturation. Our observations help us to reconstruct the structural events determining unfolding and distinguish the mechanisms that rule the different processes of unfolding.
Collapse
Affiliation(s)
- Christian Roumestand
- Centre
de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 34090 Montpellier, France
| | - Erika Dudas
- European
Synchrotron Radiation Facility, Ave des Martyrs, 38000 Grenoble, France
| | - Rita Puglisi
- King’s
College London, 5 Cutcombe Rd, SE59RT London, U.K.
| | | | - Philippe Barthe
- Centre
de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 34090 Montpellier, France
| | | | | |
Collapse
|
2
|
Temussi PA, Martin SR, Pastore A. Life and death of Yfh1: how cool is cold denaturation. Q Rev Biophys 2025; 58:e2. [PMID: 39801016 DOI: 10.1017/s0033583524000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce ad hoc destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability. The present review aims at recapitulating all the open questions that Yfh1 has helped to address, including understanding the differences and commonalities of the cold, heat and pressure unfolded states. This protein thus offers a unique tool for studying aspects of protein stability so far been considered difficult to assess and provides important guidelines that could allow the identification of other similar systems.
Collapse
Affiliation(s)
| | | | - Annalisa Pastore
- Elettra Sincrotrone Trieste, Italy
- The Wohl Institute, King's College London, London, UK
| |
Collapse
|
3
|
Li SS, Liu ZM, Li J, Ma YB, Dong ZY, Hou JW, Shen FJ, Wang WB, Li QM, Su JG. Prediction of mutation-induced protein stability changes based on the geometric representations learned by a self-supervised method. BMC Bioinformatics 2024; 25:282. [PMID: 39198740 PMCID: PMC11360314 DOI: 10.1186/s12859-024-05876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Thermostability is a fundamental property of proteins to maintain their biological functions. Predicting protein stability changes upon mutation is important for our understanding protein structure-function relationship, and is also of great interest in protein engineering and pharmaceutical design. RESULTS Here we present mutDDG-SSM, a deep learning-based framework that uses the geometric representations encoded in protein structure to predict the mutation-induced protein stability changes. mutDDG-SSM consists of two parts: a graph attention network-based protein structural feature extractor that is trained with a self-supervised learning scheme using large-scale high-resolution protein structures, and an eXtreme Gradient Boosting model-based stability change predictor with an advantage of alleviating overfitting problem. The performance of mutDDG-SSM was tested on several widely-used independent datasets. Then, myoglobin and p53 were used as case studies to illustrate the effectiveness of the model in predicting protein stability changes upon mutations. Our results show that mutDDG-SSM achieved high performance in estimating the effects of mutations on protein stability. In addition, mutDDG-SSM exhibited good unbiasedness, where the prediction accuracy on the inverse mutations is as well as that on the direct mutations. CONCLUSION Meaningful features can be extracted from our pre-trained model to build downstream tasks and our model may serve as a valuable tool for protein engineering and drug design.
Collapse
Affiliation(s)
- Shan Shan Li
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zhao Ming Liu
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Jiao Li
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Yi Bo Ma
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Ze Yuan Dong
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Jun Wei Hou
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Fu Jie Shen
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Wei Bu Wang
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Qi Ming Li
- National Engineering Center for New Vaccine Research, Beijing, China.
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China.
| | - Ji Guo Su
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China.
- National Engineering Center for New Vaccine Research, Beijing, China.
| |
Collapse
|
4
|
Pastore A, Temussi PA. Unfolding under Pressure: An NMR Perspective. Chembiochem 2023; 24:e202300164. [PMID: 37154795 DOI: 10.1002/cbic.202300164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
This review aims to analyse the role of solution nuclear magnetic resonance spectroscopy in pressure-induced in vitro studies of protein unfolding. Although this transition has been neglected for many years because of technical difficulties, it provides important information about the forces that keep protein structure together. We first analyse what pressure unfolding is, then provide a critical overview of how NMR spectroscopy has contributed to the field and evaluate the observables used in these studies. Finally, we discuss the commonalities and differences between pressure-, cold- and heat-induced unfolding. We conclude that, despite specific peculiarities, in both cold and pressure denaturation the important contribution of the state of hydration of nonpolar side chains is a major factor that determines the pressure dependence of the conformational stability of proteins.
Collapse
Affiliation(s)
- Annalisa Pastore
- European Synchrotron Radiation Facilities, 71 Ave des Martyrs, 38000, Grenoble, France
- The Wohl Institute, King's College London, 5 Cutcombe Rd, SE59RT, London, UK
| | | |
Collapse
|
5
|
Pastore A, Temussi PA. Crowding revisited: Open questions and future perspectives. Trends Biochem Sci 2022; 47:1048-1058. [PMID: 35691783 DOI: 10.1016/j.tibs.2022.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Although biophysical studies have traditionally been performed in diluted solutions, it was pointed out in the late 1990s that the cellular milieu contains several other macromolecules, creating a condition of molecular crowding. How crowding affects protein stability is an important question heatedly discussed over the past 20 years. Theoretical estimations have suggested a 5-20°C effect of fold stabilisation. This estimate, however, is at variance with what has been verified experimentally that proposes only a limited increase of stability, opening the question whether some of the assumptions taken for granted should be reconsidered. The present review critically analyses the causes of this discrepancy and discusses the limitations and implications of the current concept of crowding.
Collapse
Affiliation(s)
- Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| |
Collapse
|
6
|
Hayashi S, Kohda D. The time-zero HSQC method improves the linear free energy relationship of a polypeptide chain through the accurate measurement of residue-specific equilibrium constants. JOURNAL OF BIOMOLECULAR NMR 2022; 76:87-94. [PMID: 35699866 DOI: 10.1007/s10858-022-00396-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
EXSY (exchange spectroscopy) NMR provides the residue-specific equilibrium constants, K, and residue-specific kinetic rate constants, k, of a polypeptide chain in a two-state exchange in the slow exchange regime. A linear free energy relationship (LFER) discovered in a log k versus log K plot is considered to be a physicochemical basis for smooth folding and conformational changes of protein molecules. For accurate determination of the thermodynamic and kinetic parameters, the measurement bias arising from state-specific differences in the R1 and R2 relaxation rates of 1H and other nuclei in HSQC and EXSY experiments must be minimized. Here, we showed that the time-zero HSQC acquisition scheme (HSQC0) is effective for this purpose, in combination with a special analytical method (Π analysis) for EXSY. As an example, we applied the HSQC0 + Π method to the two-state exchange of nukacin ISK-1 in an aqueous solution. Nukacin ISK-1 is a 27-residue lantibiotic peptide containing three mono-sulfide linkages. The resultant bias-free residue-based LFER provided valuable insights into the transition state of the topological interconversion of nukacin ISK-1. We found that two amino acid residues were exceptions in the residue-based LFER relationship. We inferred that the two residues could adopt special conformations in the transition state, to allow the threading of some side chains through a ring structure formed by one of the mono-sulfide linkages. In this context, the two residues are a useful target for the manipulation of the physicochemical properties and biological activities of nukacin ISK-1.
Collapse
Affiliation(s)
- Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Puglisi R, Cioni P, Gabellieri E, Presciuttini G, Pastore A, Temussi PA. Heat and cold denaturation of yeast frataxin: The effect of pressure. Biophys J 2022; 121:1502-1511. [PMID: 35278425 PMCID: PMC9072581 DOI: 10.1016/j.bpj.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Yfh1 is a yeast protein with the peculiar characteristic to undergo, in the absence of salt, cold denaturation at temperatures above the water freezing point. This feature makes the protein particularly interesting for studies aiming at understanding the rules that determine protein fold stability. Here, we present the phase diagram of Yfh1 unfolding as a function of pressure (0.1-500 MPa) and temperature 278-313 K (5-40°C) both in the absence and in the presence of stabilizers using Trp fluorescence as a monitor. The protein showed a remarkable sensitivity to pressure: at 293 K, pressures around 10 MPa are sufficient to cause 50% of unfolding. Higher pressures were required for the unfolding of the protein in the presence of stabilizers. The phase diagram on the pressure-temperature plane together with a critical comparison between our results and those found in the literature allowed us to draw conclusions on the mechanism of the unfolding process under different environmental conditions.
Collapse
Affiliation(s)
- Rita Puglisi
- UK-DRI at King's College London, The Wohl Institute, London, (UK)
| | | | | | | | - Annalisa Pastore
- UK-DRI at King's College London, The Wohl Institute, London, (UK); European Synchrotron Radiation Facility, Grenoble, (France).
| | | |
Collapse
|
8
|
Bitonti A, Puglisi R, Meli M, Martin SR, Colombo G, Temussi PA, Pastore A. Recipes for Inducing Cold Denaturation in an Otherwise Stable Protein. J Am Chem Soc 2022; 144:7198-7207. [PMID: 35427450 PMCID: PMC9052743 DOI: 10.1021/jacs.1c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Although cold denaturation
is a fundamental phenomenon common to
all proteins, it can only be observed in a handful of cases where
it occurs at temperatures above the freezing point of water. Understanding
the mechanisms that determine cold denaturation and the rules that
permit its observation is an important challenge. A way to approach
them is to be able to induce cold denaturation in an otherwise stable
protein by means of mutations. Here, we studied CyaY, a relatively
stable bacterial protein with no detectable cold denaturation and
a high melting temperature of 54 °C. We have characterized for
years the yeast orthologue of CyaY, Yfh1, a protein that undergoes
cold and heat denaturation at 5 and 35 °C, respectively. We demonstrate
that, by transferring to CyaY the lessons learnt from Yfh1, we can
induce cold denaturation by introducing a restricted number of carefully
designed mutations aimed at destabilizing the overall fold and inducing
electrostatic frustration. We used molecular dynamics simulations
to rationalize our findings and demonstrate the individual effects
observed experimentally with the various mutants. Our results constitute
the first example of rationally designed cold denaturation and demonstrate
the importance of electrostatic frustration on the mechanism of cold
denaturation.
Collapse
Affiliation(s)
- Angela Bitonti
- Department of Molecular Medicine, University of Pavia, Via C Forlanini 6, 27100 Pavia, Italy
| | - Rita Puglisi
- UK Dementia Research Institute at the Maurice Wohl Institute of King’s College London, London SE5 9RT, United Kingdom
| | - Massimiliano Meli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Stephen R. Martin
- Structural Biology Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, Pavia 27100, Italy
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King’s College London, London SE5 9RT, United Kingdom
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King’s College London, London SE5 9RT, United Kingdom
| |
Collapse
|
9
|
Puglisi R. Protein Mutations and Stability, a Link with Disease: The Case Study of Frataxin. Biomedicines 2022; 10:biomedicines10020425. [PMID: 35203634 PMCID: PMC8962269 DOI: 10.3390/biomedicines10020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe–S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich’s Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners.
Collapse
Affiliation(s)
- Rita Puglisi
- UK Dementia Research Institute at the Wohl Institute of King's College London, London SE59RT, UK
| |
Collapse
|
10
|
Alexander Harrison J, Pruška A, Oganesyan I, Bittner P, Zenobi R. Temperature-Controlled Electrospray Ionization: Recent Progress and Applications. Chemistry 2021; 27:18015-18028. [PMID: 34632657 PMCID: PMC9298390 DOI: 10.1002/chem.202102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/11/2022]
Abstract
Native electrospray ionization (ESI) and nanoelectrospray ionization (nESI) allow researchers to analyze intact biomolecules and their complexes by mass spectrometry (MS). The data acquired using these soft ionization techniques provide a snapshot of a given biomolecules structure in solution. Over the last thirty years, several nESI and ESI sources capable of controlling spray solution temperature have been developed. These sources can be used to elucidate the thermodynamics of a given analyte, as well as provide structural information that cannot be readily obtained by other, more commonly used techniques. This review highlights how the field of temperature-controlled mass spectrometry has developed.
Collapse
Affiliation(s)
| | - Adam Pruška
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Irina Oganesyan
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Philipp Bittner
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|
11
|
Kancherla AK, Marincin KA, Mishra SH, Frueh DP. Minimizing Pervasive Artifacts in 4D Covariance Maps for Protein Side Chain NMR Assignments. J Phys Chem A 2021; 125:8313-8323. [PMID: 34510900 PMCID: PMC8480538 DOI: 10.1021/acs.jpca.1c05507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Indexed: 01/23/2023]
Abstract
Nuclear magnetic resonance (NMR) is a mainstay of biophysical studies that provides atomic level readouts to formulate molecular mechanisms. Side chains are particularly important to derive mechanisms involving proteins as they carry functional groups, but NMR studies of side chains are often limited by challenges in assigning their signals. Here, we designed a novel computational method that combines spectral derivatives and matrix square-rooting to produce reliable 4D covariance maps from routinely acquired 3D spectra and facilitates side chain resonance assignments. Thus, we generate two 4D maps from 3D-HcccoNH and 3D-HCcH-TOCSY spectra that each help overcome signal overlap or sensitivity losses. These 4D maps feature HC-HSQCs of individual side chains that can be paired to assigned backbone amide resonances of individual aliphatic signals, and both are obtained from a single modified covariance calculation. Further, we present 4D maps produced using conventional triple resonance experiments to easily assign asparagine side chain amide resonances. The 4D covariance maps encapsulate the lengthy manual pattern recognition used in traditional assignment methods and distill the information as correlations that can be easily visualized. We showcase the utility of the 4D covariance maps with a 10 kDa peptidyl carrier protein and a 52 kDa cyclization domain from a nonribosomal peptide synthetase.
Collapse
Affiliation(s)
- Aswani K. Kancherla
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Kenneth A. Marincin
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Subrata H. Mishra
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Dominique P. Frueh
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| |
Collapse
|
12
|
Politou AS, Pastore A, Temussi PA. An "Onion-like" Model of Protein Unfolding: Collective versus Site Specific Approaches. Chemphyschem 2021; 23:e202100520. [PMID: 34549492 DOI: 10.1002/cphc.202100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Approximating protein unfolding by an all-or-none cooperative event is a convenient assumption that can provide precious global information on protein stability. It is however quickly emerging that the scenario is far more complex and that global denaturation curves often hide a rich heterogeneity of states that are largely probe dependent. In this review, we revisit the importance of gaining site-specific information on the unfolding process. We focus on nuclear magnetic resonance, as this is the main technique able to provide site-specific information. We review historical and most modern approaches that have allowed an appreciable advancement of the field of protein folding. We also demonstrate how unfolding is a reporter dependent event, suggesting the outmost importance of selecting the reporter carefully.
Collapse
Affiliation(s)
- Anastasia S Politou
- Faculty of Medicine, University of Ioannina.,Institute of Molecular Biology and Biotechnology-FORTH, Ioannina, Greece
| | - Annalisa Pastore
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| |
Collapse
|
13
|
Puglisi R, Karunanithy G, Hansen DF, Pastore A, Temussi PA. The anatomy of unfolding of Yfh1 is revealed by site-specific fold stability analysis measured by 2D NMR spectroscopy. Commun Chem 2021; 4:127. [PMID: 35243007 PMCID: PMC7612453 DOI: 10.1038/s42004-021-00566-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether an analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.
Collapse
Affiliation(s)
- Rita Puglisi
- grid.511435.7UK-DRI at King’s College London, The Wohl Institute, London, UK
| | - Gogulan Karunanithy
- grid.83440.3b0000000121901201Department of Structural Biology, Division of Biosciences, University College London, London, UK
| | - D. Flemming Hansen
- grid.83440.3b0000000121901201Department of Structural Biology, Division of Biosciences, University College London, London, UK
| | - Annalisa Pastore
- grid.511435.7UK-DRI at King’s College London, The Wohl Institute, London, UK ,grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|
14
|
El-Baba TJ, Raab SA, Buckley RP, Brown CJ, Lutomski CA, Henderson LW, Woodall DW, Shen J, Trinidad JC, Niu H, Jarrold MF, Russell DH, Laganowsky A, Clemmer DE. Thermal Analysis of a Mixture of Ribosomal Proteins by vT-ESI-MS: Toward a Parallel Approach for Characterizing the Stabilitome. Anal Chem 2021; 93:8484-8492. [PMID: 34101419 PMCID: PMC8546744 DOI: 10.1021/acs.analchem.1c00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The thermal stabilities of endogenous, intact proteins and protein assemblies in complex mixtures were characterized in parallel by means of variable-temperature electrospray ionization coupled to mass spectrometry (vT-ESI-MS). The method is demonstrated by directly measuring the melting transitions of seven proteins from a mixture of proteins derived from ribosomes. A proof-of-concept measurement of a fraction of an Escherichia coli lysate is provided to extend this approach to characterize the thermal stability of a proteome. As the solution temperature is increased, proteins and protein complexes undergo structural and organizational transitions; for each species, the folded ↔ unfolded and assembled ↔ disassembled populations are monitored based on changes in vT-ESI-MS charge state distributions and masses. The robustness of the approach illustrates a step toward the proteome-wide characterization of thermal stabilities and structural transitions-the stabilitome.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rachel P Buckley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Christopher J Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Corinne A Lutomski
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|