1
|
Lu K, Wazawa T, Matsuda T, Shcherbakova DM, Verkhusha VV, Nagai T. Near-infrared PAINT localization microscopy via chromophore replenishment of phytochrome-derived fluorescent tag. Commun Biol 2024; 7:473. [PMID: 38637683 PMCID: PMC11026395 DOI: 10.1038/s42003-024-06169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Bacterial phytochromes are attractive molecular templates for engineering fluorescent proteins (FPs) because their near-infrared (NIR) emission significantly extends the spectral coverage of GFP-like FPs. Existing phytochrome-based FPs covalently bind heme-derived tetrapyrrole chromophores and exhibit constitutive fluorescence. Here we introduce Rep-miRFP, an NIR imaging probe derived from bacterial phytochrome, which interacts non-covalently and reversibly with biliverdin chromophore. In Rep-miRFP, the photobleached non-covalent adduct can be replenished with fresh biliverdin, restoring fluorescence. By exploiting this chromophore renewal capability, we demonstrate NIR PAINT nanoscopy in mammalian cells using Rep-miRFP.
Collapse
Affiliation(s)
- Kai Lu
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Daria M Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
2
|
Kaziannis S, Broser M, van Stokkum IHM, Dostal J, Busse W, Munhoven A, Bernardo C, Kloz M, Hegemann P, Kennis JTM. Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction. Proc Natl Acad Sci U S A 2024; 121:e2318996121. [PMID: 38478688 PMCID: PMC10962995 DOI: 10.1073/pnas.2318996121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.
Collapse
Affiliation(s)
- Spyridon Kaziannis
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
- Department of Physics, University of Ioannina, IoanninaGr-45110, Greece
| | - Matthias Broser
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Ivo H. M. van Stokkum
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Jakub Dostal
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Wayne Busse
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Arno Munhoven
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Cesar Bernardo
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Peter Hegemann
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - John T. M. Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|
3
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
4
|
Hontani Y, Mehlhorn J, Domratcheva T, Beck S, Kloz M, Hegemann P, Mathes T, Kennis JTM. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J Am Chem Soc 2023; 145:1040-1052. [PMID: 36607126 PMCID: PMC9853863 DOI: 10.1021/jacs.2c10621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid C═N stretch vibration in the LA state and the Gln C═O in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands
| | - Jennifer Mehlhorn
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tatiana Domratcheva
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany,Department
of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sebastian Beck
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institute
of Physics, ELI-Beamlines, Na Slovance 2, 182
21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tilo Mathes
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,
| |
Collapse
|