1
|
MacLeod J, Saywell A, Yu P. On-surface synthesis. Commun Chem 2024; 7:291. [PMID: 39653746 PMCID: PMC11628612 DOI: 10.1038/s42004-024-01359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Affiliation(s)
- Jennifer MacLeod
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Alexander Saywell
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Adachi Y, Brndiar J, Konôpka M, Turanský R, Zhu Q, Wen HF, Sugawara Y, Kantorovich L, Štich I, Li YJ. Tip-activated single-atom catalysis: CO oxidation on Au adatom on oxidized rutile TiO 2 surface. SCIENCE ADVANCES 2023; 9:eadi4799. [PMID: 37756403 PMCID: PMC10530063 DOI: 10.1126/sciadv.adi4799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Single-atom catalysis of carbon monoxide oxidation on metal-oxide surfaces is crucial for greenhouse recycling, automotive catalysis, and beyond, but reports of the atomic-scale mechanism are still scarce. Here, using scanning probe microscopy, we show that charging single gold atoms on oxidized rutile titanium dioxide surface, both positively and negatively, considerably promotes adsorption of carbon monoxide. No carbon monoxide adsorption is observed on neutral gold atoms. Two different carbon monoxide adsorption geometries on gold atoms are identified. We demonstrate full control over the redox state of adsorbed gold single atoms, carbon monoxide adsorption geometry, and carbon monoxide adsorption/desorption by the atomic force microscopy tip. On charged gold atoms, we activate Eley-Rideal oxidation reaction between carbon monoxide and a neighboring oxygen adatom by the tip. Our results provide unprecedented insights into carbon monoxide adsorption and suggest that the gold dual activity for carbon monoxide oxidation after electron or hole attachment is also the key ingredient in photocatalysis under realistic conditions.
Collapse
Affiliation(s)
- Yuuki Adachi
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ján Brndiar
- Institute of Informatics, Slovak Academy of Sciences, 845 07 Bratislava, Slovakia
| | - Martin Konôpka
- Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, 812 19 Bratislava, Slovakia
| | - Robert Turanský
- Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
| | - Qiang Zhu
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Huan Fei Wen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi 030051, China
| | - Yasuhiro Sugawara
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lev Kantorovich
- Department of Physics, School of Natural and Mathematical Sciences, King’s College London, The Strand, London WC2R 2LS, UK
| | - Ivan Štich
- Institute of Informatics, Slovak Academy of Sciences, 845 07 Bratislava, Slovakia
- Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Yan Jun Li
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Miyazaki M, Sugawara Y, Li YJ. Charge Behavior of Terminal Hydroxyl on Rutile TiO 2(110). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10588-10593. [PMID: 34433262 DOI: 10.1021/acs.langmuir.1c01845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium dioxide (TiO2) is of considerable interest as a photocatalyst and a catalyst support. Surface hydroxyl groups (OH) are the most common adsorbates on the TiO2 surface and are believed to play crucial roles in their applications. Although the characteristics of bridging hydroxyl (OHbr) have been well understood, the adsorption structure and charged states of terminal hydroxyl (OHt) have not yet been experimentally elucidated at an atomic scale. In this study, we have investigated an isolated OHt on the rutile TiO2(110) surface by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We found that OHt is in a negatively charged state. The unique characteristic of OHt is different from that of OHbr and involves the amphoterism and diversity of catalytic reactions of TiO2.
Collapse
Affiliation(s)
- Masato Miyazaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Sugawara
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yan Jun Li
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|