1
|
Zhang Y, Zheng Z, Si Y, Sa B, Li H, Yu T, Wen C, Wu B. Structural, Electronic, and Nonlinear Optical Properties of C 66H 4 and C 70Cl 6 Encapsulating Li and F Atoms. ACS OMEGA 2021; 6:16234-16240. [PMID: 34179667 PMCID: PMC8223433 DOI: 10.1021/acsomega.1c02364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Recently, nonclassical fullerene derivatives C66H4 and C70Cl6, which both contain two negatively curved moieties of heptagons, have been successfully synthesized. Inspired by these experimental achievements, the structural and electronic properties of C66H4, C70Cl6, Li@C66H4, F@C66H4, Li@C70Cl6, and F@C70Cl6 were systematical studied through density functional theory calculations in this work. Our results show that the reduction of the front molecular orbital gap of fullerene derivatives occurs with the introduction of Li and F atoms. After quantitative analysis of back-donations of charge between an encapsulated atom and an external carbon cage, it is found that C66H4 and C70Cl6 prefer to act as electron acceptors. It is interesting to note that the strong covalent nature of the interactions between a F atom and a carbon cage is observed, whereas the weak covalent and strong ionic interactions occur between a Li atom and a carbon cage. On the other hand, according to the first hyperpolarizability results, the encapsulation of the Li atom enhances the nonlinear optical response of fullerene derivatives. This work provides a strategy to improve nonlinear optical properties of C66H4 and C70Cl6, reveals the internal mechanism of the contribution from Li and F atoms to endohedral fullerene derivatives, and will contribute to the designation of endohedral fullerene derivative devices.
Collapse
Affiliation(s)
- Ying Zhang
- Key
Laboratory of Eco-materials Advanced Technology, College of Materials
Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhao Zheng
- Key
Laboratory of Eco-materials Advanced Technology, College of Materials
Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yitao Si
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- State
Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
| | - Baisheng Sa
- Key
Laboratory of Eco-materials Advanced Technology, College of Materials
Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hengyi Li
- Fujian
Applied Technology Engineering Center of Power Battery Materials, Fujian College of Water Conservancy and Electric Power, Yongan, Fujian 366000, China
| | - Tao Yu
- State
Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, P. R. China
| | - Cuilian Wen
- Key
Laboratory of Eco-materials Advanced Technology, College of Materials
Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bo Wu
- Key
Laboratory of Eco-materials Advanced Technology, College of Materials
Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|