1
|
Petay M, Tang E, Bouderlique E, Zaworski J, Dazzi A, Letavernier E, Bazin D, Mathurin J, Deniset-Besseau A. Nano-Investigation of Mineralized Biological Samples Chemical Composition: Experimental Challenges, Constraints, and Considerations. Anal Chem 2025; 97:4954-4961. [PMID: 40028890 DOI: 10.1021/acs.analchem.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding the chemical composition of calcifications in biological tissues at the nanoscale is crucial for deciphering their formation processes and possible pathological implications. Atomic Force Microscopy Infrared Spectroscopy (AFM-IR), by allowing IR spectroscopy at the nanoscale, is thus a promising strategy to access such highly spatially resolved chemical information. However, these specimens' inherent morphological and mechanical heterogeneities pose significant challenges for standard resonance-enhanced (RE-AFM-IR) and tapping AFM-IR acquisition modes. This study introduces a dual-mode approach combining tapping and RE-AFM-IR to address these challenges. Tapping AFM-IR is first employed to acquire the topography of the soft and rough surfaces, while RE-AFM-IR provides chemical description at the submicrometric scale through hyperspectral (HS) imaging. This dual-mode methodology is validated on different mineralized biological samples, including breast microcalcifications, revealing the local chemical heterogeneous distribution within the calcium phosphate matrice. Our results outline that dual-mode AFM-IR, coupled with HS imaging, enables robust chemical characterization of highly heterogeneous biomaterials and offers a more comprehensive description compared to conventional AFM-IR single-wavenumber mapping and local spectra.
Collapse
Affiliation(s)
- Margaux Petay
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ellie Tang
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Elise Bouderlique
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Jeremy Zaworski
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Alexandre Dazzi
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Emmanuel Letavernier
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
- Service des Explorations Fonctionnelles Multidisciplinaires, Hôpital TENON, 4 rue de la Chine, 75020 Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Jérémie Mathurin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
2
|
Molina C, Kim D, Mehndiratta L, Lee J, Madawala CK, Slade JH, Tivanski AV, Grassian VH. Comparison of Different Vibrational Spectroscopic Probes (ATR-FTIR, O-PTIR, Micro-Raman, and AFM-IR) of Lipids and Other Compounds Found in Environmental Samples: Case Study of Substrate-Deposited Sea Spray Aerosols. ACS MEASUREMENT SCIENCE AU 2025; 5:74-86. [PMID: 39991033 PMCID: PMC11843498 DOI: 10.1021/acsmeasuresciau.4c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 02/25/2025]
Abstract
The use of vibrational spectroscopy to probe environmental samples is increasing with the development of new methods, including microspectroscopic probes. In this study, we compare different vibrational methods to interrogate lipids and other compounds found in environmental samples. In particular, we compare the vibrational spectra for different lipids that include fatty acids (protonated and deprotonated forms), fatty alcohols, and fatty esters by utilizing attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, optical photothermal infrared (O-PTIR) spectroscopy, micro-Raman spectroscopy, and atomic force microscopy infrared (AFM-IR) spectroscopy. We show the utility of infrared methods to clearly delineate the structure of the lipid, i.e., whether it is an acid, alcohol, or ester. In contrast, it is difficult to differentiate these from micro-Raman spectroscopy. Furthermore, in the case of fatty acids, the protonation state can also be determined by infrared methods. In most cases, there is a high correlation between the three different infrared techniques as seen for ATR-FTIR and O-PTIR spectroscopy; however, this is not always true with AFM-IR spectroscopy for samples with low signal-to-noise or in a liquid phase state. Additionally, substrate-deposited aerosols were collected from the Scripps Ocean-Atmosphere Research Simulator (SOARS) and examined with both the O-PTIR and micro-Raman spectroscopy to show how these two vibrational probes together can provide essential chemical insights into environmental samples that are difficult to achieve otherwise.
Collapse
Affiliation(s)
- Carolina Molina
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Deborah Kim
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Lincoln Mehndiratta
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jennie Lee
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Chamika K. Madawala
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan H. Slade
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Alexei V. Tivanski
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Vicki H. Grassian
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Mshani IH, Jackson FM, Mwanga RY, Kweyamba PA, Mwanga EP, Tambwe MM, Hofer LM, Siria DJ, González-Jiménez M, Wynne K, Moore SJ, Okumu F, Babayan SA, Baldini F. Screening of malaria infections in human blood samples with varying parasite densities and anaemic conditions using AI-Powered mid-infrared spectroscopy. Malar J 2024; 23:188. [PMID: 38880870 PMCID: PMC11181574 DOI: 10.1186/s12936-024-05011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Effective testing for malaria, including the detection of infections at very low densities, is vital for the successful elimination of the disease. Unfortunately, existing methods are either inexpensive but poorly sensitive or sensitive but costly. Recent studies have shown that mid-infrared spectroscopy coupled with machine learning (MIRs-ML) has potential for rapidly detecting malaria infections but requires further evaluation on diverse samples representative of natural infections in endemic areas. The aim of this study was, therefore, to demonstrate a simple AI-powered, reagent-free, and user-friendly approach that uses mid-infrared spectra from dried blood spots to accurately detect malaria infections across varying parasite densities and anaemic conditions. METHODS Plasmodium falciparum strains NF54 and FCR3 were cultured and mixed with blood from 70 malaria-free individuals to create various malaria parasitaemia and anaemic conditions. Blood dilutions produced three haematocrit ratios (50%, 25%, 12.5%) and five parasitaemia levels (6%, 0.1%, 0.002%, 0.00003%, 0%). Dried blood spots were prepared on Whatman™ filter papers and scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) for machine-learning analysis. Three classifiers were trained on an 80%/20% split of 4655 spectra: (I) high contrast (6% parasitaemia vs. negative), (II) low contrast (0.00003% vs. negative) and (III) all concentrations (all positive levels vs. negative). The classifiers were validated with unseen datasets to detect malaria at various parasitaemia levels and anaemic conditions. Additionally, these classifiers were tested on samples from a population survey in malaria-endemic villages of southeastern Tanzania. RESULTS The AI classifiers attained over 90% accuracy in detecting malaria infections as low as one parasite per microlitre of blood, a sensitivity unattainable by conventional RDTs and microscopy. These laboratory-developed classifiers seamlessly transitioned to field applicability, achieving over 80% accuracy in predicting natural P. falciparum infections in blood samples collected during the field survey. Crucially, the performance remained unaffected by various levels of anaemia, a common complication in malaria patients. CONCLUSION These findings suggest that the AI-driven mid-infrared spectroscopy approach holds promise as a simplified, sensitive and cost-effective method for malaria screening, consistently performing well despite variations in parasite densities and anaemic conditions. The technique simply involves scanning dried blood spots with a desktop mid-infrared scanner and analysing the spectra using pre-trained AI classifiers, making it readily adaptable to field conditions in low-resource settings. In this study, the approach was successfully adapted to field use, effectively predicting natural malaria infections in blood samples from a population-level survey in Tanzania. With additional field trials and validation, this technique could significantly enhance malaria surveillance and contribute to accelerating malaria elimination efforts.
Collapse
Affiliation(s)
- Issa H Mshani
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK.
| | - Frank M Jackson
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Rehema Y Mwanga
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Prisca A Kweyamba
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Emmanuel P Mwanga
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK
| | - Mgeni M Tambwe
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Lorenz M Hofer
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Doreen J Siria
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK
| | - Mario González-Jiménez
- School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK
- School of Chemistry, The University of Glasgow, Glasgow, G128QQ, UK
| | - Klaas Wynne
- School of Chemistry, The University of Glasgow, Glasgow, G128QQ, UK
| | - Sarah J Moore
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- School of Life Sciences and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Fredros Okumu
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK
- School of Life Sciences and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
- School of Public Health, The University of the Witwatersrand, Park Town, Johannesburg, South Africa
| | - Simon A Babayan
- School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, The University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Bhatta A, Upadhyaya J, Chamlagai D, Dkhar L, Phanrang PT, Rao Kollipara M, Mitra S. Exploring the impact of novel thiazole-pyrazole fused benzo-coumarin derivatives on human serum albumin: Synthesis, photophysical properties, anti-cholinergic activity, and interaction studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123669. [PMID: 38006865 DOI: 10.1016/j.saa.2023.123669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Derivatives of thiazole-pyrazole fused benzo-coumarin compounds were successfully synthesized and characterized, followed by a comprehensive spectroscopic investigation on various photophysical properties in different media. The multipronged approach using steady state and time resolved fluorescence spectroscopy pointed out the impact of substitution in the estimated spectroscopic and other physicochemical properties of the systems. Further, the evaluation of anti-acetylcholinesterase (anti-AChE) activity yielded significant insight into the therapeutic potential of the synthesized coumarinyl compounds for the treatment of Alzheimer's disease (AD). The findings revealed a non-competitive mode of inhibition mechanism, with an estimated IC50 value of 67.72 ± 2.00 nM observed for one of the investigated systems as AChE inhibitor. Notably, this value is even lower than that of an FDA-approved AD drug Donepezil (DON), indicating the enhanced potency of the coumarin derivatives in inhibiting AChE. Interestingly, significant diminution in inhibition was observed in presence of human serum albumin (HSA) as evidenced by the relative increase in IC50 value by 8 ∼ 39 % in different cases, which emphasized the role of albumin proteins to control therapeutic efficacies of potential medications. In-depth spectroscopic and in-silico analysis quantified the nature of interactions of the investigated systems with HSA and AChE. Overall, the outcomes of this study provide significant understanding into the biophysical characteristics of novel thiazole-pyrazole fused benzo-coumarin systems, which could aid in the development of new cholinergic agents for the treatment of AD and materials based on coumarin motifs.
Collapse
Affiliation(s)
- Anindita Bhatta
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Jahnabi Upadhyaya
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Dipak Chamlagai
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Lincoln Dkhar
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | | | - Mohan Rao Kollipara
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
5
|
Neal SN, Stacchiola D, Tenney SA. Spatially resolved multimodal vibrational spectroscopy under high pressures. Phys Chem Chem Phys 2023; 25:31578-31582. [PMID: 37966851 DOI: 10.1039/d3cp03958g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In this perspective, we discuss the potential impact on in situ studies under controlled environments of a novel multimodal spectroscopic technique, optical photothermal infrared + Raman spectroscopy, which enables the simultaneous collection of infrared and Raman scattering spectra, along with hyperspectral imaging and chemical imaging with wavelength-independent sub-500 nm spatial resolution. A brief review of the current literature regarding the O-PTIR technique is presented along with recent work from our own lab on determining the crystallinity of soft and inorganic materials. The results highlight the possibility of resolving differences in the crystallinity of soft materials associated with changes in material processing. We also demonstrate the first reported use of a diamond anvil cell with simultaneous infrared and Raman measurements that showcases, using a high energy material as an example, the potential use of O-PTIR spectroscopy in diamond anvil cell techniques.
Collapse
Affiliation(s)
- Sabine N Neal
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Dario Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Samuel A Tenney
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
6
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
7
|
Han K, Ma S, Sun J, Xu M, Qi X, Wang S, Li L, Li X. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus. Biophys J 2023; 122:1445-1458. [PMID: 36905122 PMCID: PMC10147843 DOI: 10.1016/j.bpj.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Increased blood viscosity in type 2 diabetes mellitus (T2DM) is a risk factor for the development of insulin resistance and diabetes-related vascular complications; however, individuals with T2DM exhibit heterogeneous hemorheological properties, including cell deformation and aggregation. Using a multiscale red blood cell (RBC) model with key parameters derived from patient-specific data, we present a computational study of the rheological properties of blood from individual patients with T2DM. Specifically, one key model parameter, which determines the shear stiffness of the RBC membrane (μ) is informed by the high-shear-rate blood viscosity of patients with T2DM. At the same time, the other, which contributes to the strength of the RBC aggregation interaction (D0), is derived from the low-shear-rate blood viscosity of patients with T2DM. The T2DM RBC suspensions are simulated at different shear rates, and the predicted blood viscosity is compared with clinical laboratory-measured data. The results show that the blood viscosity obtained from clinical laboratories and computational simulations are in agreement at both low and high shear rates. These quantitative simulation results demonstrate that the patient-specific model has truly learned the rheological behavior of T2DM blood by unifying the mechanical and aggregation factors of the RBCs, which provides an effective way to extract quantitative predictions of the rheological properties of the blood of individual patients with T2DM.
Collapse
Affiliation(s)
- Keqin Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuhao Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xiaojing Qi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China.
| | - Xuejin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Kato R, Yano TA, Tanaka T. Single-cell infrared vibrational analysis by optical trapping mid-infrared photothermal microscopy. Analyst 2023; 148:1285-1290. [PMID: 36811918 DOI: 10.1039/d2an01917e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Single-cell analysis by means of vibrational spectroscopy combined with optical trapping is a reliable platform for unveiling cell-to-cell heterogeneities in vast populations. Although infrared (IR) vibrational spectroscopy provides rich molecular fingerprint information on biological samples in a label-free manner, its application with optical trapping has never been achieved due to weak gradient forces generated by the diffraction-limited focused IR beam and strong background of water absorption. Herein, we present single-cell IR vibrational analysis that incorporates mid-infrared photothermal (MIP) microscopy with optical trapping. Optically trapped single polymer particles and red blood cells (RBCs) in blood could be chemically identified owing to their IR vibrational fingerprints. This single-cell IR vibrational analysis further allowed us to probe the chemical heterogeneities of RBCs originating from the variation in the intracellular characteristics. Our demonstration paves the way for the IR vibrational analysis of single cells and chemical characterization in various fields.
Collapse
Affiliation(s)
- Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan. .,Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan. .,Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Taka-Aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan. .,Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan. .,Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Takuo Tanaka
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan. .,Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan. .,Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Ong JJY, Oh J, Yong Ang X, Naidu R, Chu TTT, Hyoung Im J, Manzoor U, Kha Nguyen T, Na SW, Han ET, Davis C, Sun Park W, Chun W, Jun H, Jin Lee S, Na S, Chan JKY, Park Y, Russell B, Chandramohanadas R, Han JH. Optical diffraction tomography and image reconstruction to measure host cell alterations caused by divergent Plasmodium species. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122026. [PMID: 36395614 DOI: 10.1016/j.saa.2022.122026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium. Understanding the biological features of various parasite forms is important for the optical diagnosis and defining pathological states, which are often constrained by the lack of ambient visualization approaches. Here, we employ a label-free tomographic technique to visualize the host red blood cell (RBC) remodeling process and quantify changes in biochemical properties arising from parasitization. Through this, we provide a quantitative body of information pertaining to the influence of host cell environment on growth, survival, and replication of P. falciparum and P. vivax in their respective host cells: mature erythrocytes and young reticulocytes. These exquisite three-dimensional measurements of infected red cells demonstrats the potential of evolving 3D imaging to advance our understanding of Plasmodium biology and host-parasite interactions.
Collapse
Affiliation(s)
- Jessica J Y Ong
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Xiang Yong Ang
- Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Renugah Naidu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Trang T T Chu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Jae Hyoung Im
- Department of Infectious Disease, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Umar Manzoor
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tuyet Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seok-Won Na
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Christeen Davis
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Se Jin Lee
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jerry K Y Chan
- KK Womens' and Childrens' Hospital, Singapore; Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, 169857, Singapore
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea; Tomocube Inc, Daejeon 34109, Republic of Korea
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Rajesh Chandramohanadas
- Department of Microbiology and Immunology, National University of Singapore, Singapore; Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - Jin-Hee Han
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand; Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
10
|
Xia Q, Yin J, Guo Z, Cheng JX. Mid-Infrared Photothermal Microscopy: Principle, Instrumentation, and Applications. J Phys Chem B 2022; 126:8597-8613. [PMID: 36285985 DOI: 10.1021/acs.jpcb.2c05827] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Midinfrared photothermal (MIP) microscopy, also called optical photothermal infrared (O-PTIR) microscopy, is an emerging tool for bond-selective chemical imaging of living biological and material samples. In MIP microscopy, a visible probe beam detects the photothermal-based contrast induced by a vibrational absorption. With submicron spatial resolution, high spectral fidelity, and reduced water absorption background, MIP microscopy has overcome the limitations in infrared chemical imaging methods. In this review, we summarize the basic principle of MIP microscopy, the different origins of MIP contrasts, and recent technology development that pushed the resolution, speed, and sensitivity of MIP imaging to a new stage. We further emphasize its broad applications in life science and material characterization, and provide a perspective of future technical advances.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
Clarke EJ, Lima C, Anderson JR, Castanheira C, Beckett A, James V, Hyett J, Goodacre R, Peffers MJ. Optical photothermal infrared spectroscopy can differentiate equine osteoarthritic plasma extracellular vesicles from healthy controls. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3661-3670. [PMID: 36066093 PMCID: PMC9521322 DOI: 10.1039/d2ay00779g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 05/26/2023]
Abstract
Equine osteoarthritis is a chronic degenerative disease of the articular joint, characterised by cartilage degradation resulting in pain and reduced mobility and thus is a prominent equine welfare concern. Diagnosis is usually at a late stage through clinical examination and radiographic imaging, whilst treatment is symptomatic not curative. Extracellular vesicles are nanoparticles that are involved in intercellular communication. The objective of this study was to investigate the feasibility of Raman and Optical Photothermal Infrared Spectroscopies to detect osteoarthritis using plasma-derived extracellular vesicles, specifically differentiating extracellular vesicles in diseased and healthy controls within the parameters of the techniques used. Plasma samples were derived from thoroughbred racehorses. A total of 14 samples were selected (control; n = 6 and diseased; n = 8). Extracellular vesicles were isolated using differential ultracentrifugation and characterised using nanoparticle tracking analysis, transmission electron microscopy, and human tetraspanin chips. Samples were then analysed using combined Raman and Optical Photothermal Infrared Spectroscopies. Infrared spectra were collected between 950-1800 cm-1. Raman spectra had bands between the wavelengths of 900-1800 cm-1 analysed. Spectral data for both Raman and Optical Photothermal Infrared Spectroscopy were used to generate clustering via principal components analysis and classification models were generated using partial least squared discriminant analysis in order to characterize the techniques' ability to distinguish diseased samples. Optical Photothermal Infrared Spectroscopy could differentiate osteoarthritic extracellular vesicles from healthy with good classification (93.4% correct classification rate) whereas Raman displayed poor classification (correct classification rate = -64.3%). Inspection of the infrared spectra indicated that plasma-derived extracellular vesicles from osteoarthritic horses contained increased signal for proteins, lipids and nucleic acids. For the first time we demonstrated the ability to use optical photothermal infrared spectroscopy combined with Raman spectroscopy to interrogate extracellular vesicles and osteoarthritis-related samples. Optical Photothermal Infrared Spectroscopy was superior to Raman in this study, and could distinguish osteoarthritis samples, suggestive of its potential use diagnostically to identify osteoarthritis in equine patients. This study demonstrates the potential of Raman and Optical Photothermal Infrared Spectroscopy to be used as a future diagnostic tool in clinical practice, with the capacity to detect changes in extracellular vesicles from clinically derived samples.
Collapse
Affiliation(s)
- Emily J Clarke
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - James R Anderson
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Catarina Castanheira
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Alison Beckett
- Biomedical Electron Microscopy Unit, University of Liverpool, UK
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Jacob Hyett
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Royston Goodacre
- Centre for Metabolomics Research, Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| |
Collapse
|
12
|
Sun J, Han K, Xu M, Li L, Qian J, Li L, Li X. Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front Physiol 2022; 13:827428. [PMID: 35283762 PMCID: PMC8914209 DOI: 10.3389/fphys.2022.827428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
The viscosity of blood is an indicator in the understanding and treatment of disease. An elevated blood viscosity has been demonstrated in patients with Type 2 Diabetes Mellitus (T2DM), which might represent a risk factor for cardiovascular complications. However, the roles of glycated hemoglobin (HbA1c) and plasma fibrinogen levels on the elevated blood viscosity in subjects with T2DM at different chronic glycemic conditions are still not clear. Here, we evaluate the relationship between the blood viscosity and HbA1c as well as plasma fibrinogen levels in patients with T2DM. The experimental data show that the mean values of the T2DM blood viscosity are higher in groups with higher HbA1c levels, but the correlation between the T2DM blood viscosity and the HbA1c level is not obvious. Instead, when we investigate the influence of plasma fibrinogen level on the blood viscosity in T2DM subjects, we find that the T2DM blood viscosity is significantly and positively correlated with the plasma fibrinogen level. Further, to probe the combined effects of multiple factors (including the HbA1c and plasma fibrinogen levels) on the altered blood viscosity in T2DM, we regroup the experimental data based on the T2DM blood viscosity values at both the low and high shear rates, and our results suggest that the influence of the elevated HbA1c level on blood viscosity is quite limited, although it is an important indicator of glycemic control in T2DM patients. Instead, the elevated blood hematocrit, the enhanced red blood cell (RBC) aggregation induced by the increased plasma fibrinogen level, and the reduced RBC deformation play key roles in the determination of blood viscosity in T2DM. Together, these experimental results are helpful in identifying the key determinants for the altered T2DM blood viscosity, which can be used in future studies of the hemorheological disturbances of T2DM patients.
Collapse
Affiliation(s)
- Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Keqin Han
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Lujuan Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|