1
|
Beleh OM, Alomari S, Weix DJ. Synthesis of Stereodefined Enones from the Cross-Electrophile Coupling of Activated Acrylic Acids with Alkyl Bromides. Org Lett 2024; 26:7217-7221. [PMID: 39162620 PMCID: PMC11516134 DOI: 10.1021/acs.orglett.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We report a one-pot synthesis of (E)-trisubstituted enones from acrylic acids through the in situ generation of a 2-pyridyl ester and subsequent cross-electrophile coupling with a nickel catalyst under reducing conditions. The scope of trisubstituted enones is broad and compatible with functionality that can be challenging in established olefination techniques. We highlight conditions necessary to suppress undesired side reactions from the α,β-unsaturated carbonyl and improve cross-electrophile coupling approaches to prepare enones.
Collapse
Affiliation(s)
- Omar M. Beleh
- University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
2
|
Bhat MUS, Ganie MA, Kumar S, Rizvi MA, Raheem S, Shah BA. Visible-Light-Mediated Synthesis of Thioesters Using Thiocarboxylic Acid as the Dual Reagent. J Org Chem 2024; 89:4607-4618. [PMID: 38509669 DOI: 10.1021/acs.joc.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We have developed a visible-light-driven method for thioester synthesis that relies on the unique dual role of thiobenzoic acids as one-electron reducing agents and reactants leading to the formation of sulfur radical species. This synthetic process offers a wide scope, accommodating various thioacid and thiol substrates without the need for a photocatalyst.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
3
|
Kushwaha AK, Kamal A, Singh HK, Maury SK, Mondal T, Singh S. Photoinduced, Metal-Free Hydroacylation of Aromatic Alkynes for Synthesis of α,β-Unsaturated Ketones via C(sp 3)-H Functionalization. Org Lett 2024; 26:1416-1420. [PMID: 38329826 DOI: 10.1021/acs.orglett.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Despite the notable advancements made over the past decade in achieving carbon-carbon bonds by transition-metal-catalyzed cross-coupling processes, metal-free cross-coupling reactions for hydroacylation of aromatic alkynes via C(sp3)-H functionalization are still rare and highly desired. Here we report a metal-free reliable approach for the synthesis of α,β-unsaturated ketones (chalcones) via C(sp3)-H functionalization using MeCN:H2O as green solvent, Eosin Y as organic photocatalyst, and ambient air as oxidant. More significantly, this strategy can effectively transform a variety of methyl arenes and aromatic alkynes into the desired product. With high atom efficiency, use of green solvents, metal-free nature, environmental friendliness, and visible light as a renewable energy source, this method is compatible with biologically active molecules.
Collapse
Affiliation(s)
- Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Tusar Mondal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| |
Collapse
|
4
|
Bhat MUS, Ganie MA, Shah BA. Metal-Free Tunable 1,2-Difunctionalization of Terminal Alkynes: Synthesis of β-Substituted α,β-Unsaturated Ketones. Chemistry 2023; 29:e202302294. [PMID: 37691543 DOI: 10.1002/chem.202302294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A metal-free tunable 1,2-difunctionalization of the terminal alkynes showcasing a tandem installation of C-C and C-S bonds has been developed. The key enabling factor for the approach is the use of acetic acid as an acyl source to synthesize β-substituted α,β-unsaturated ketones. The reaction at room temperature leads to the regioselective acylation at the terminal carbon of alkynes, whereas at -78 °C, the acylation occurs at the more substituted carbon.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| | - Majid Ahmad Ganie
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| | - Bhahwal Ali Shah
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| |
Collapse
|
5
|
Hu JQ, Zhang A, Wang H, Niu L, Wang QX, Zhu LL, Li YZ, Wu C. Discovery and Biosynthesis of Glycosylated Cycloheximide from a Millipede-Associated Actinomycete. JOURNAL OF NATURAL PRODUCTS 2023; 86:340-345. [PMID: 36693198 DOI: 10.1021/acs.jnatprod.2c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemical redundancy of microbial natural products (NPs) underscores the importance to exploit new resources of microorganisms. Insect-associated microbes are prolific but largely underexplored sources of diverse NPs. Herein, we discovered the new compound α-l-rhamnosyl-actiphenol (1) from a millipede-associated Streptomyces sp. ML6, which is the first glycosylated cycloheximide-class natural product. Interestingly, bioinformatics analysis of the ML6 genome revealed that the biosynthesis of 1 involves a cooperation between two gene clusters (chx and rml) located distantly on the genome of ML6. We also carried out in vitro enzymatic glycosylation of cycloheximide using an exotic promiscuous glycosyltransferase BsGT-1, which resulted in the production of an additional cycloheximide glycoside cycloheximide 7-O-β-d-glucoside (5). Although the antifungal and cytotoxic activities of the new compounds 1 and 5 were attenuated relative to those of cycloheximide, our work not only enriches the chemical repertoire of the cycloheximide family but also provides new insights into the structure-activity relationship optimization and ecological roles of cycloheximide.
Collapse
Affiliation(s)
- Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Ai Zhang
- Fetal Medicine Center, Qingdao Women and Children's Hospital, Qingdao University, 266071 Qingdao, People's Republic of China
| | - Han Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Luo Niu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Qing-Xia Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Le-Le Zhu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| |
Collapse
|
6
|
Jiang C, Liu K, Zhang L, Liu T, Zhang N, Xu Y. Ni(II) Salt-catalyzed Direct Aryl Thioetherification of 1-Naphthylamine and its Derivative with Disulfides. CHEM LETT 2022. [DOI: 10.1246/cl.220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Chunfeng Jiang
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
- Liaoning Institute of Science and Technology, Benxi 117004, P.R.China
| | - Kaixuan Liu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| | - Le Zhang
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| | - Tian Liu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| | - Nan Zhang
- Liaoning Institute of Science and Technology, Benxi 117004, P.R.China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| |
Collapse
|