1
|
He D, Cheng R, Zhang X, Han X, Zhou F. Environmentally friendly detoxification of pistachios from aflatoxins using citric acid and Glycine-based bio-MOF. Food Chem 2025; 476:143448. [PMID: 39986077 DOI: 10.1016/j.foodchem.2025.143448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Aflatoxins are carcinogenic compounds that pose significant risks to food safety. Traditional removal methods often face challenges such as high chemical consumption, harsh conditions, and potential toxic byproducts. Eco-friendly solutions, such as solid-phase extraction with recyclable nanostructures, present a promising alternative due to their effectiveness, low cost, and minimal toxicity. In this study, an organic linker was synthesized from non-toxic compounds. This linker was then combined with CuCl2 for the preparation of a novel bio-MOF. The organic linker and bio-MOF were characterized. The bio-MOF's performance in removing aflatoxins from spiked solutions and contaminated pistachio extracts was evaluated under optimal conditions with aflatoxin concentrations measured by high-performance liquid chromatography. The results showed that the bio-MOF effectively removed over 95 % of aflatoxins in t < 10 min. Additionally, the recycled bio-MOF, after washing with solvent and reuse, maintained a significant portion of its efficiency, losing approximately 20 % of its initial performance after five consecutive uses.
Collapse
Affiliation(s)
- Danfeng He
- College of Science, Qiongtai Normal University, Haikou 571100, Hainan, China
| | - Ruijing Cheng
- College of Science, Qiongtai Normal University, Haikou 571100, Hainan, China
| | - Xiaolin Zhang
- College of Science, Qiongtai Normal University, Haikou 571100, Hainan, China
| | - Xu Han
- College of Science, Qiongtai Normal University, Haikou 571100, Hainan, China
| | - Fujiang Zhou
- College of Science, Qiongtai Normal University, Haikou 571100, Hainan, China.
| |
Collapse
|
2
|
Yang M, Xiao L, Chen WT, Deng X, Hu G. Recent advances on metal-organic framework-based electrochemical sensors for determination of organic small molecules. Talanta 2024; 280:126744. [PMID: 39186861 DOI: 10.1016/j.talanta.2024.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Metal-organic frameworks (MOFs) are an extraordinarily versatile class of porous materials renowned for their intricate three-dimensional skeletal architectures and exceptional chemical properties. These extraordinary attributes have pushed MOFs into the vanguard of diverse disciplines such as microporous conduction, catalysis, separation, biomedical engineering, and electrochemical sensing. The focus of this review is to offer a comprehensive summary of recent advancements in designing MOF-based electrochemical sensors for detecting organic small molecules. offer a comprehensive survey of the recent progress in the methodologies adopted for the construction of MOF composites, covering template-assisted synthesis, Modification in synthesis, and post-synthesis modification. In addition, we discuss the practical application of MOF-based electrochemical sensors in the detection of organic small molecules. Our findings highlight the superior electrochemical sensing capabilities of these novel composites compared to those of their pristine counterparts. In conclusion, we provide a condensed perspective on the potential future trajectories in this domain, underscoring the impetus for continued enquiry and enhancement of MOF composite assemblies. With sustained investigation, the horizon appears bright for electrochemical sensing of small organic molecules and their myriad applications.
Collapse
Affiliation(s)
- Mengxia Yang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Linfeng Xiao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, China
| | - Xiujun Deng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
3
|
Haikal RR, El Salakawy N, Ibrahim A, Ali SL, Mamdouh W. Synergistic antioxidant and antibacterial effects of a Zn-ascorbate metal-organic framework loaded with marjoram essential oil. NANOSCALE ADVANCES 2024; 6:4664-4671. [PMID: 39263404 PMCID: PMC11386125 DOI: 10.1039/d4na00519h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
Antimicrobial resistance (AMR) has become an immense threat to public health leading to an urgent need for development of new technologies to tackle such a challenge. Plant-based drugs, specifically essential oils (EOs) and plant extracts, have shown significant potential as effective green antimicrobial agents. However, they suffer from high volatility and low thermal stability resulting in their inefficient utilization in commercial settings. Among the various nanoencapsulation technologies reported, metal-organic frameworks (MOFs) have been recently investigated as potential nanocarriers of EOs in attempt to enhance their stability. Herein, we report the utilization of Zn-ascorbate MOF for the encapsulation of marjoram essential oil (MEO) with synergistic antioxidant and antibacterial activities. The prepared composite was thoroughly characterized via a number of techniques and its antibacterial performance was investigated against various strains of Gram-negative and Gram-positive bacteria. The results demonstrated that the antioxidant activity originated from the ascorbic acid ligand (l-Asc), while the antibacterial activity originated from Zn2+ ions as well as encapsulated MEO.
Collapse
Affiliation(s)
- Rana R Haikal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Noha El Salakawy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Alaa Ibrahim
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Shaimaa L Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| |
Collapse
|
4
|
Han Z, Yuan M, Nguyen N, Zhou HC, Hubbard JE, Wang Y. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coord Chem Rev 2024; 514:215926. [DOI: 10.1016/j.ccr.2024.215926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
6
|
Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02385-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|