1
|
Elboray EE, Bae T, Kikushima K, Takenaga N, Kita Y, Dohi T. Metal-Free Synthesis of Benzisoxazolones Utilizing ortho-Ester and ortho-Cyano-Functionalized Diaryliodonium Salts with Protected Hydroxylamines. J Org Chem 2024; 89:17518-17527. [PMID: 39523745 DOI: 10.1021/acs.joc.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the development of metal-free one/two-pot procedures for the synthesis of benzo[c]isoxazol-3(1H)-one (benzisoxazolone) heterocycles by designing diaryliodonium salts featuring ortho-ester or nitrile functional groups. These react smoothly with protected hydroxylamines under mild conditions to produce N-arylhydroxylamine intermediates, which readily cyclize to give benzisoxazolone derivatives under acidic conditions. This metal-free process maintains the weak N-O bond, tolerates a wide range of diaryliodonium salts and protected hydroxylamines with diverse functional/protecting groups, thereby overcoming the challenges associated with previous transformations. The protocol expands the reaction scope and broadens the chemical space of the fused isoxazolone backbones to include unprecedented five-membered heteroaryl-fused isoxazolones in high yields. This method is also applicable to gram-scale synthesis, and the resulting benzisoxazolones can be effectively derivatized at the N-position to afford valuable compounds.
Collapse
Affiliation(s)
- Elghareeb E Elboray
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Taeho Bae
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Kotaro Kikushima
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Amin PM, Wang W, Wang C, Zhou J, Wang Y. Gold-catalyzed benzannulations of 2-alkenylindoles with alkynes: a protecting-group-free regioselective approach to carbazoles. Chem Commun (Camb) 2024; 60:5326-5329. [PMID: 38666614 DOI: 10.1039/d4cc00176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
A gold(I)-catalyzed protecting-group-free benzannulation approach to functionalized NH-carbazoles was accomplished via the hydroarylation of alkynes with 2-alkenylindoles. A broad spectrum of terminal and internal alkynes and 2-alkenylindoles successfully participated in this annulation reaction. The protocol efficiently enabled the formation of substituted NH-carbazoles with moderate to specific regioselectivities. The synthetic utility of this protocol was demonstrated by a variety of post-functionalizations.
Collapse
Affiliation(s)
- Pathan Mosim Amin
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China.
| | - Weilin Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China.
| | - Chao Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China.
| | - Junrui Zhou
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China.
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China.
| |
Collapse
|
3
|
Jiang K, Pan C, Wang L, Wang HY, Han J. Ortho-ester-substituted diaryliodonium salts enabled regioselective arylocyclization of naphthols toward 3,4-benzocoumarins. Beilstein J Org Chem 2024; 20:841-851. [PMID: 38655558 PMCID: PMC11035988 DOI: 10.3762/bjoc.20.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Cyclic annulation involving diaryliodonium salts is an efficient tool for the construction of two or more chemical bonds in a one-pot process. Ortho-functionalized diaryliodonium salts have showcased distinct reactivity in the exploration of benzocyclization or arylocyclization. With this strategy of ortho-ester-substituted diaryliodonium salts, herein, we utilized a copper catalyst to activate the C-I bond of diaryliodonium salts in the generation of aryl radicals, thus resulting in an annulation reaction with naphthols and substituted phenols. This approach yielded a diverse array of 3,4-benzocoumarin derivatives bearing various substituents.
Collapse
Affiliation(s)
- Ke Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hao-Yang Wang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|