1
|
Li S, Huang X, Xing M, Zhao D, Li S, Cao X. Manipulating Dynamic Light-Driven Solid-Liquid Transition and Static Reversible Photochromism by an Organic Cocrystal Strategy. Angew Chem Int Ed Engl 2025; 64:e202500238. [PMID: 39871107 DOI: 10.1002/anie.202500238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystal system. In this study, we first report the construction of charge transfer cocrystal allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-tetrafluorophthalonitrile (TFP) as an electron acceptor. In this case, the dynamic photo-responsive solid-to-liquid phase transition is due to the photoisomerization of TSB under UV light irradiation, while the accumulation of melted droplets during solid-state photochemical process causes mechanical deformation of TSB-TFP cocrystals. The subsequent reversible photochromic behavior is attributed to the emergence of free radicals through a photo-induced electron transfer. Moreover, TSB-TFP microcrystals present typical excitation wavelength dependent emission (EWDE) fluorescence by surfactant-mediated method. This work realizes the dynamic-static photochemical cascade processes in response to UV light irradiation in an organic cocrystal system, providing the effective method for a new type of smart photo-responsive materials.
Collapse
Affiliation(s)
- Shuzhen Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Xueyong Huang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Menghao Xing
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Dongpu Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Sitong Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Kubendiran B, Kurakula U, Baskar S, Medishetty R, Kole GK. Salts of trans-3-Styryl Pyridine: The Effect of N-Quaternization on Solid-State Photoreactivity, and Photochemical Crystal Melting. Chem Asian J 2025; 20:e202401323. [PMID: 39714385 DOI: 10.1002/asia.202401323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Investigating solid-state photoreactivity, driven by crystal packing, has been a major enduring research theme in Crystal Engineering. Trans-3-styryl pyridine (3-StPy), an unsymmetric olefin, is photo-stable. However, when converted to a series of salts, they exhibited solid-state photoreactivity under UV irradiation. Crystal structures of 3-StPy, its protonated salts, namely, (3-StPyH)(HSO4) ⋅ H2O (1), (3-StPyH)(CF3CO2) (2), and (3-StPyH)(p-Tol-SO3) (3), and methylated salt (3-StPyMe)I (4) were determined by X-ray diffraction. 3-StPy molecules were found not to align in the parallel arrangement required to undergo solid-state [2+2] photocycloaddition reaction; however, upon protonation and methylation, the unsymmetric 3-StPyH+ and [3-StPyMe]+ cations aligned in a head-to-tail parallel arrangement, predominantly governed by the cation⋅⋅⋅π interactions. Various structural features, e. g., the patterns of hydrogen bonding, etc. have been addressed, and established by Hirshfeld surface analysis. The salt with p-tolyl sulfonate anion (3) with Z'>1 represents a rare crystal class. It was also noted that the crystals of 1 and 2 melted into a liquid state upon photodimerization reaction. UV-vis absorption and fluorescence properties have been explored. The electronic structures of 3-StPy, 3-StPyH+, [3-StPyMe]+, and the dimer [3,3'-MPyPhCB]2+ cations have been elucidated by DFT calculations, and the effect of N-quaternization on crystal structures and photophysical properties has been discussed.
Collapse
Affiliation(s)
- Banu Kubendiran
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Uma Kurakula
- Department of Chemistry, Indian Institute of Technology Bhilai, 491001, Durg, Chhattisgarh, India
| | - Shyamvarnan Baskar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Raghavender Medishetty
- Department of Chemistry, Indian Institute of Technology Bhilai, 491001, Durg, Chhattisgarh, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, 491001, Durg, Chhattisgarh, India
| | - Goutam Kumar Kole
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Yu C, Wang Z, Zhu X, Gao L, Li L, Naumov P, Yu Q, Wang G. Light-Driven Adaptive Molecular Crystals Activated by [2+2] and [4+4] Cycloadditions. Chemistry 2025; 31:e202404229. [PMID: 39715287 DOI: 10.1002/chem.202404229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Photomechanical crystals act as light-driven material-machines that can convert the energy carried by photons into kinetic energy via shape deformation or displacement, and this capability holds a paramount significance for the development of photoactuated devices. This transformation is usually attributed to anisotropic expansion or contraction of the unit cell engendered by light-induced structural modifications that lead to accumulation and release of stress that generates a momentum, resulting in readily observable mechanical effects. Among the available photochemical processes, the photoinduced [2+2] and [4+4] reactions are known for their robustness, predictability, amenability to control with molecular and supramolecular engineering approaches, and efficiency that has already been elevated to a proof-of-concept smart devices based on organic crystals. This review article presents a summary of the recent research progress on photomechanical properties of organic and metal-organic crystals where the mechanical effects are based on [2+2] and [4+4] cycloaddition reactions. It consolidates the current understating of the chemical strategies and structure-property correlations, and highlights the advantages and drawbacks of this class of adaptive crystals within the broader field of crystal adaptronics.
Collapse
Affiliation(s)
- Chunjiao Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Zhengcheng Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Xiaotong Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Lin Gao
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- SAFIR Novel Materials Development Lab, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Qi Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Guoming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| |
Collapse
|
4
|
Qi J, Lan L, Chen Q, Li L, Naumov P, Zhang H. Precise Photochemical Post-Processing of Molecular Crystals. Angew Chem Int Ed Engl 2025; 64:e202417409. [PMID: 39561039 DOI: 10.1002/anie.202417409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Molecular crystals carry a great potential as new soft smart materials, with a plethora of recent examples overcoming the major obstacle of mechanical flexibility, and this research direction holds enormous potential to revolutionize optics, electronics, medicine, and space exploration. However, shaping organic crystals into desired shapes and sizes remains a major practical challenge due to the lack of control over the crystallization process, and the difficulties in mechanical post-processing without introduction of defects that are usually imparted by their soft nature. Here we present an innovative approach that employs photochemical processing for precise and nondestructive cutting of a molecular crystal. Our proposed method uses light to post-process crystals of the desired size and shape, similar to using light to cut other materials. This reaction induces strain, ensuring sharp cleavage without the need for melting or other processes. We further demonstrate the potential of this approach by producing crystals of arbitrary size, which can be used as controllable optical waveguides. Among other potential applications, this method can be used to prepare dynamic crystals, particularly those with aspect ratios crucial for mechanical deformation, such as flexible electronics, soft robotics, and sensing.
Collapse
Affiliation(s)
- Jianqun Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Quanliang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department of Science and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, 129188, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, 10003, New York, USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| |
Collapse
|
5
|
Pham-Tran VNP, Moffat JGD, Marczenko KM. Polymorph driven diversification of photosalient responses in a zinc(II) coordination complex. Chem Commun (Camb) 2024; 60:7890-7893. [PMID: 38979940 DOI: 10.1039/d4cc01593b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A novel crystallographic form of a Zn(II) coordination complex [Zn(4-ohbz)2(4-nvp)2] (1-Form-III) (H4-ohbz = 4-hydroxybenzoic acid and 4-nvp = (E)-4-(1-naphthylvinyl)pyridine), undergoes a solid-state photochemical [2+2] cycloaddition reaction accompanied by a moderate photosalient effect, whereby single-crystals show cracking and splitting. This UV-induced cycloaddition accompanies a single-crystal to single-crystal transformation, allowing for continuous monitoring of the unit cell parameters. The new polymorph represents an intermediate form of the two previously reported crystallographic forms of [Zn(4-ohbz)2(4-nvp)2], and provides novel insight into moderating the magnitude of photosalient responses across polymorphic materials.
Collapse
Affiliation(s)
- Victoria N P Pham-Tran
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - James G D Moffat
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Katherine M Marczenko
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
6
|
Khan S, Mir MH. Photomechanical properties in metal-organic crystals. Chem Commun (Camb) 2024; 60:7555-7565. [PMID: 38953709 DOI: 10.1039/d4cc02655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The emergence of materials that can effectively convert photon energy (light) into motion (mechanical work) and change their shapes on command is of great interest for their potential in the fabrication of devices (powered by light) that will revolutionize the technologies of optical actuators, smart medical devices, soft robotics, artificial muscles and flexible electronics. Recently, metal-organic crystals have emerged as desirable smart hybrid materials that can hop, split and jump. Thus, their incorporation into polymer host objects can control movement from molecules to millimetres, opening up a new world of light-switching smart materials. This feature article briefly summarizes the recent part of the fast-growing literature on photomechanical properties in metal-organic crystals, such as coordination compounds, coordination polymers (CPs), and metal-organic frameworks (MOFs). The article highlights the contributions of our group along with others in this area and aims to provide a consolidated idea of the engineering strategies and structure-property relationships of these hybrid materials for such rare phenomena with diverse potential applications.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India.
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France.
| | | |
Collapse
|
7
|
Zhang Q, Wang Y, Braunstein P, Lang JP. Construction of olefinic coordination polymer single crystal platforms: precise organic synthesis, in situ exploration of reaction mechanisms and beyond. Chem Soc Rev 2024; 53:5227-5263. [PMID: 38597808 DOI: 10.1039/d3cs01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Olefin [2+2] photocycloaddition reactions based on coordination-bond templates provide numerous advantages for the selective synthesis of cyclobutane compounds. This review outlines the recent advances in the design and construction of single crystal platforms of olefinic coordination polymers for precise organic synthesis, in situ exploration of reaction mechanisms, and possible developments as comprehensively as possible. Numerous examples are presented to illustrate how the arrangements of the olefin pairs influence the solid-state photoreactivity and examine the types of cyclobutane products. Furthermore, the photocycloaddition reaction mechanisms are investigated by combining advanced techniques such as single crystal X-ray diffraction, powder X-ray diffraction, nuclear magnetic resonance, infrared spectroscopy, fluorescence spectroscopy, laser scanning confocal microscopy and theoretical calculations. Finally, potential applications resulting from promising physicochemical properties before and after photoreactions are discussed, and existing challenges and possible solutions are also proposed.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal - CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Giri P, Panda A, Panda MK. Photoinduced Puffing with Large Volume Expansion and Photomechanical Motions induced by Topochemical [4+4] Reactions in Molecular Crystal Solvates. Chemistry 2024; 30:e202303836. [PMID: 38198243 DOI: 10.1002/chem.202303836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
In this work, we report the first example of two crystal solvates of an anthracene-benzhydrazide based molecule (Ant) that display very distinct photo-responsive behaviour when 365 or 405 nm or visible light is illuminated. For the first time, the crystal hydrate that has water molecule in the lattice (hereafter named as Ant-H2O) display fascinating puffing behavior with large volume expansion upto 50 % accompanied with surface modulation when illuminated with 405 nm light, a phenomenon very much similar to the rice or popcorn puffing by thermal treatment. Utilizing the properties of photoconverted Ant-H2O crystals, we have demonstrated their application in photoinduced enhanced liquid absorption using various liquids/solutions. The other crystal solvate having DMF in the crystal lattice (hereafter named as Ant-DMF) responds to 405 nm light by bending, twisting, chopping, jumping or splitting etc. The chopping of Ant-DMF crystal was also observed under ambient/white light but at a slower rate compared to 405 nm light. Single crystal X-ray diffraction study reveals that the photoinduced puffing and photomechanical effects of these materials are rooted to the topochemical [4+4] cycloaddition reaction between the anthracene moieties that facilitate molecular packing change assisted by the reconfiguration of intermolecular non-covalent interactions involving lattice trapped solvent molecules.
Collapse
Affiliation(s)
- Prasenjit Giri
- Department of Chemistry, Jadavpur University, Kolkata, 700032
| | - Atanu Panda
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Ibaraki, Japan
- Current affiliation: Amity University, Amity Institute of Applied Science, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Manas K Panda
- Department of Chemistry, Jadavpur University, Kolkata, 700032
| |
Collapse
|
9
|
Yang X, Al-Handawi MB, Li L, Naumov P, Zhang H. Hybrid and composite materials of organic crystals. Chem Sci 2024; 15:2684-2696. [PMID: 38404393 PMCID: PMC10884791 DOI: 10.1039/d3sc06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Organic molecular crystals have historically been viewed as delicate and fragile materials. However, recent studies have revealed that many organic crystals, especially those with high aspect ratios, can display significant flexibility, elasticity, and shape adaptability. The discovery of mechanical compliance in organic crystals has recently enabled their integration with responsive polymers and other components to create novel hybrid and composite materials. These hybrids exhibit unique structure-property relationships and synergistic effects that not only combine, but occasionally also enhance the advantages of the constituent crystals and polymers. Such organic crystal composites rapidly emerge as a promising new class of materials for diverse applications in optics, electronics, sensing, soft robotics, and beyond. While specific, mostly practical challenges remain regarding scalability and manufacturability, being endowed with both structurally ordered and disordered components, the crystal-polymer composite materials set a hitherto unexplored yet very promising platform for the next-generation adaptive devices. This Perspective provides an in-depth analysis of the state-of-the-art in design strategies, dynamic properties and applications of hybrid and composite materials centered on organic crystals. It addresses the current challenges and provides a future outlook on this emerging class of multifunctional, stimuli-responsive, and mechanically robust class of materials.
Collapse
Affiliation(s)
- Xuesong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi PO Box 38044 Abu Dhabi UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste Misirkov 2 MK-1000 Skopje Macedonia
- Molecular Design Institute, Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
10
|
Khan S, Das P, Naaz S, Brandão P, Choudhury A, Medishetty R, Ray PP, Mir MH. A dual-functional 2D coordination polymer exhibiting photomechanical and electrically conductive behaviours. Dalton Trans 2023; 52:17934-17941. [PMID: 37982190 DOI: 10.1039/d3dt02728g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A photoactive two-dimensional coordination polymer (2D CP) [Zn2(4-spy)2(bdc)2]n (1) [4-spy = 4-styrylpyridine and H2bdc = 1,4-benzendicarboxylic acid] undergoes a photochemical [2 + 2] cycloaddition reaction upon UV irradiation. Interestingly, the crystals of 1 show different photomechanical effects, such as jumping, swelling, and splitting, during UV irradiation. In addition, the CP was employed for conductivity measurements before and after UV irradiation via current density-voltage characteristics and impedance spectroscopy, which suggest that they are semiconducting in nature and can be used as Schottky diodes. Thus, this work demonstrates the potential dual applications of a 2D CP based on photosalient and conductivity properties.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Pubali Das
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | - Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aditya Choudhury
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh 492015, India.
| | | | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | | |
Collapse
|
11
|
Chen Y, Yu C, Zhu X, Yu Q. Photomechanical effects based on a one-dimensional Zn coordination polymer crystal driven by [4 + 4] cycloaddition. Dalton Trans 2023; 52:12194-12197. [PMID: 37606299 DOI: 10.1039/d3dt02088f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Photomechanical crystals are promising candidates for photo actuators due to their ability to convert light energy into mechanical energy. We synthesized a coordination polymer crystal that can undergo [4 + 4] cycloaddition reactions with mechanical motion. The inclusion of {[ZnL2(4,4'-bipy)(CH3OH)2]}∞ in a polymer membrane significantly magnified the actuation behavior.
Collapse
Affiliation(s)
- Yanlin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, College of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, People's Republic of China
| | - Chunjiao Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, People's Republic of China.
| | - Xiaotong Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, People's Republic of China.
| | - Qi Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, People's Republic of China.
| |
Collapse
|
12
|
Kim S, An J, Choi H, Jung SH, Lee SS, Park IH. Construction of Photoreactive Chiral Metal-Organic Frameworks and Their [2 + 2] Photocycloaddition Reactions. Inorg Chem 2023; 62:13173-13178. [PMID: 37552800 DOI: 10.1021/acs.inorgchem.3c02349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Chiral metal-organic frameworks (CMOFs) and solid-state [2 + 2] photocyclization have been explored as independent areas in crystal engineering. We herein report the photoreactive CMOFs that undergo a [2 + 2] photocycloaddition reaction for the first time. Through the incorporation of a dipyridyl olefin ligand, 1,4-bis[2-(4-pyridyl)ethenyl]benzene, and d-camphoric acid or l-camphoric acid, we constructed a pair of homochiral Zn(II) CMOFs (d-1 or l-1) with a two-dimensional sql topology via a two-step procedure to avoid racemization. Both d-1 and l-1 were photoinert due to the large olefin bond separation. The removal of the solvent molecules between layers enabled them (d-1a and l-1a) to undergo [2 + 2] cycloaddition reactions; d-1a is more reactive (70%) than l-1a (20%) probably due to proper desolvation-induced rearrangement. The photoluminescence properties are also discussed. This work presents a new perspective on photoreactive homochiral network materials with diverse topologies and applications.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Jaewook An
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Heekyoung Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|