1
|
Zhao R, Hou L, Tesfagaber W, Song L, Zhang Z, Li F, Bu Z, Zhao D. Virtual Screening and Molecular Dynamics Simulation Targeting the ATP Domain of African Swine Fever Virus Type II DNA Topoisomerase. Viruses 2025; 17:681. [PMID: 40431693 PMCID: PMC12115740 DOI: 10.3390/v17050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
African Swine Fever Virus (ASFV) Topo II ATPase domain, resistant to conventional inhibitors (e.g., ICRF-187) due to M18/W19 steric clashes, was targeted via hierarchical virtual screening (Schrödinger) of the Chembridge library combined with MM/GBSA calculations. Five ligands (10012949, 40242484, 46712145, 15880207, and 33688815) showed high affinity, with 46712145 adopting symmetrical π-π stacking, hydrogen bonds, and alkyl interactions to bypass steric hindrance. Molecular dynamics simulations (100 ns) revealed ligand-induced flexibility, evidenced by elevated RMSD/Rg values versus the free protein. DCCM analysis highlighted enhanced anti-correlated motions between GHKL motifs and sensor domains in chain B/C, suggesting stabilization of a non-catalytic conformation to inhibit ATP hydrolysis. Free energy landscape (FEL) analysis showed 46712145 occupying a broad, shallow energy basin, enabling conformational adaptability, contrasting the narrow deep well of the free protein. This study proposes a symmetric ligand design strategy and conformational capture mechanism to block ATPase activity. Compound 46712145 demonstrates stable binding and dynamic regulation, providing a novel lead scaffold for anti-ASFV drug development. These findings establish a structural framework for combating ASFV through targeted ATPase inhibition.
Collapse
Affiliation(s)
- Rui Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.T.); (L.S.); (Z.Z.); (F.L.)
| | - Lezi Hou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Weldu Tesfagaber
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.T.); (L.S.); (Z.Z.); (F.L.)
| | - Linfei Song
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.T.); (L.S.); (Z.Z.); (F.L.)
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.T.); (L.S.); (Z.Z.); (F.L.)
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.T.); (L.S.); (Z.Z.); (F.L.)
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.T.); (L.S.); (Z.Z.); (F.L.)
| | - Dongming Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.T.); (L.S.); (Z.Z.); (F.L.)
| |
Collapse
|
2
|
Borkakoti N, Ribeiro AJM, Thornton JM. A structural perspective on enzymes and their catalytic mechanisms. Curr Opin Struct Biol 2025; 92:103040. [PMID: 40158299 DOI: 10.1016/j.sbi.2025.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
In this perspective, we analyse the progress made in our knowledge of enzyme sequences, structures and functions in the last 2 years. We review how much new enzyme data have been garnered and annotated, derived from the study of proteins using structural and computational approaches. Recent advances towards capturing 'Catalysis in silico' are described, including knowledge and predictions of enzyme structures, their interactions and mechanisms. We highlight the flood of enzyme data, driven by metagenomic sequencing, the improved enzyme data resources, the high coverage in Protein Data Bank of E.C. classes and the AI-driven structure prediction techniques that facilitate the accurate prediction of protein structures. We note the focus on disordered regions in the context of enzyme regulation and specificity and comment on emerging bioinformatic approaches that capture reaction mechanisms computationally for comparing and predicting enzyme mechanisms. We also consider the drivers of progress in this field in the next five years.
Collapse
Affiliation(s)
- Neera Borkakoti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
| | - António J M Ribeiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da, Universidade do Porto, 4169-007, Porto, Portugal
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| |
Collapse
|
3
|
Zhang Q. Structural insights into the advancements of mobile colistin resistance enzymes. Microbiol Res 2025; 291:127983. [PMID: 39612773 DOI: 10.1016/j.micres.2024.127983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The plasmid-encoded mobile colistin resistance enzyme (MCR) is challenging the clinical efficacy of colistin as a last-resort antibiotic against multidrug-resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A, and its catalytic domain in the periplasm has been elucidated. To date, there are many works on the catalytic domain and function of this enzyme class. However, the roles of unreported soluble or inter-membrane domains remain undefined, which might cause an inaccurate or even incorrect understanding of substrate recognition and binding. In this review, MCR-1 is first compared and analyzed from the perspective of the full-length alpha-fold MCR-1. Specifically, some disputed issues, especially in its architecture and catalytic mechanism are discussed independently. Meanwhile, the structure-based insights into MCRs variants, their evolutions, and the balance between colistin-resistance and survival costs, are also critically analyzed. Importantly, by comparing it with the full-length MCR-1, several potential pockets for drug design have been re-identified. Finally, recent advancements in inhibitors targeting MCR-1 are also in-depth summarized. These details offer a new perspective on MCRs and serve as a valuable foundation for drug development.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong.
| |
Collapse
|
4
|
Liu R, Sun J, Li LF, Cheng Y, Li M, Fu L, Li S, Peng G, Wang Y, Liu S, Qu X, Ran J, Li X, Pang E, Qiu HJ, Wang Y, Qi J, Wang H, Gao GF. Structural basis for difunctional mechanism of m-AMSA against African swine fever virus pP1192R. Nucleic Acids Res 2024; 52:11301-11316. [PMID: 39166497 PMCID: PMC11472052 DOI: 10.1093/nar/gkae703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
The African swine fever virus (ASFV) type II topoisomerase (Topo II), pP1192R, is the only known Topo II expressed by mammalian viruses and is essential for ASFV replication in the host cytoplasm. Herein, we report the structures of pP1192R in various enzymatic stages using both X-ray crystallography and single-particle cryo-electron microscopy. Our data structurally define the pP1192R-modulated DNA topology changes. By presenting the A2+-like metal ion at the pre-cleavage site, the pP1192R-DNA-m-AMSA complex structure provides support for the classical two-metal mechanism in Topo II-mediated DNA cleavage and a better explanation for nucleophile formation. The unique inhibitor selectivity of pP1192R and the difunctional mechanism of pP1192R inhibition by m-AMSA highlight the specificity of viral Topo II in the poison binding site. Altogether, this study provides the information applicable to the development of a pP1192R-targeting anti-ASFV strategy.
Collapse
Affiliation(s)
- Ruili Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- Beijing Life Science Academy, Beijing 102200, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yingxian Cheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Guorui Peng
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Sheng Liu
- SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Ran
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, Liaoning Province 110030, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Erqi Pang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yanli Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Xin Y, Xian R, Yang Y, Cong J, Rao Z, Li X, Chen Y. Structural and functional insights into the T-even type bacteriophage topoisomerase II. Nat Commun 2024; 15:8719. [PMID: 39379365 PMCID: PMC11461880 DOI: 10.1038/s41467-024-53037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
T-even type bacteriophages are virulent phages commonly used as model organisms, playing a crucial role in understanding various biological processes. One such process involves the regulation of DNA topology during phage replication upon host infection, governed by type IIA DNA topoisomerases. In spite of various studies on prokaryotic and eukaryotic counterparts, viral topoisomerase II remains insufficiently understood, especially the unique domain composition of T4 phage. In this study, we determine the cryo-EM structures of topoisomerase II from T4 and T6 phages, including full-length structures of both apo and DNA-binding states which have never been determined before. Together with other conformational states, these structures provide an explicit blueprint of mechanisms of phage topoisomerase II. Particularly, the asymmetric dimeric interactions observed in cryo-EM structures of T6 phage topoisomerase II ATPase domain and central domain bound with DNA shed light on the asynchronous ATP usage and asynchronous cleavage of the G-segment DNA, respectively. The elucidation of phage topoisomerase II's structures and functions not only enhances our understanding of mechanisms and evolutionary parallels with prokaryotic and eukaryotic homologs but also highlights its potential as a model for developing type IIA topoisomerase inhibitors.
Collapse
Affiliation(s)
- Yuhui Xin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Runqi Xian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunge Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Cong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|