1
|
Liao L, Xie M, Zheng X, Zhou Z, Deng Z, Gao J. Molecular insights fast-tracked: AI in biosynthetic pathway research. Nat Prod Rep 2025; 42:911-936. [PMID: 40130306 DOI: 10.1039/d4np00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Covering: 2000 to 2025This review explores the potential of artificial intelligence (AI) in addressing challenges and accelerating molecular insights in biosynthetic pathway research, which is crucial for developing bioactive natural products with applications in pharmacology, agriculture, and biotechnology. It provides an overview of various AI techniques relevant to this research field, including machine learning (ML), deep learning (DL), natural language processing, network analysis, and data mining. AI-powered applications across three main areas, namely, pathway discovery and mining, pathway design, and pathway optimization, are discussed, and the benefits and challenges of integrating omics data and AI for enhanced pathway research are also elucidated. This review also addresses the current limitations, future directions, and the importance of synergy between AI and experimental approaches in unlocking rapid advancements in biosynthetic pathway research. The review concludes with an evaluation of AI's current capabilities and future outlook, emphasizing the transformative impact of AI on biosynthetic pathway research and the potential for new opportunities in the discovery and optimization of bioactive natural products.
Collapse
Affiliation(s)
- Lijuan Liao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Mengjun Xie
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoshan Zheng
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhao Zhou
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Kong Y, Chen H, Huang X, Chang L, Yang B, Chen W. Precise metabolic modeling in post-omics era: accomplishments and perspectives. Crit Rev Biotechnol 2025; 45:683-701. [PMID: 39198033 DOI: 10.1080/07388551.2024.2390089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.
Collapse
Affiliation(s)
- Yawen Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
3
|
Toumpe I, Choudhury S, Hatzimanikatis V, Miskovic L. The Dawn of High-Throughput and Genome-Scale Kinetic Modeling: Recent Advances and Future Directions. ACS Synth Biol 2025. [PMID: 40262025 DOI: 10.1021/acssynbio.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Researchers have invested much effort into developing kinetic models due to their ability to capture dynamic behaviors, transient states, and regulatory mechanisms of metabolism, providing a detailed and realistic representation of cellular processes. Historically, the requirements for detailed parametrization and significant computational resources created barriers to their development and adoption for high-throughput studies. However, recent advancements, including the integration of machine learning with mechanistic metabolic models, the development of novel kinetic parameter databases, and the use of tailor-made parametrization strategies, are reshaping the field of kinetic modeling. In this Review, we discuss these developments and offer future directions, highlighting the potential of these advances to drive progress in systems and synthetic biology, metabolic engineering, and medical research at an unprecedented scale and pace.
Collapse
Affiliation(s)
- Ilias Toumpe
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Subham Choudhury
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
4
|
Boorla VS, Maranas CD. CatPred: a comprehensive framework for deep learning in vitro enzyme kinetic parameters. Nat Commun 2025; 16:2072. [PMID: 40021618 PMCID: PMC11871309 DOI: 10.1038/s41467-025-57215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Estimation of enzymatic activities still heavily relies on experimental assays, which can be cost and time-intensive. We present CatPred, a deep learning framework for predicting in vitro enzyme kinetic parameters, including turnover numbers (kcat), Michaelis constants (Km), and inhibition constants (Ki). CatPred addresses key challenges such as the lack of standardized datasets, performance evaluation on enzyme sequences that are dissimilar to those used during training, and model uncertainty quantification. We explore diverse learning architectures and feature representations, including pretrained protein language models and three-dimensional structural features, to enable robust predictions. CatPred provides accurate predictions with query-specific uncertainty estimates, with lower predicted variances correlating with higher accuracy. Pretrained protein language model features particularly enhance performance on out-of-distribution samples. CatPred also introduces benchmark datasets with extensive coverage (~23 k, 41 k, and 12 k data points for kcat, Km, and Ki respectively). Our framework performs competitively with existing methods while offering reliable uncertainty quantification.
Collapse
Grants
- This material is based upon work supported by the Center for Bioenergy Innovation (CBI), U.S. Department of Energy, Office of Science, Biological and Environmental Research Program under Award Number ERKP886. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Energy. This work was also supported by the U.S. National Science Foundation funded Molecule Maker Lab Institute (MMLI), award number 2019897 supported by National AI Research Institutes Program of the Directorate for Computer and Information Science and Engineering (CISE), in collaboration with the Division of Chemistry (CHE) and the Division of Chemical, Bioengineering, and Environmental Transport Systems (CBET) awarded to CDM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- The Center for Bioenergy Innovation, Oak Ridge, TN, 37830, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Center for Bioenergy Innovation, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
5
|
Anna Sajeevan K, Osinuga A, B A, Ferdous S, Shahreen N, Noor MS, Koneru S, Santos-Correa LM, Salehi R, Chowdhury NB, Calderon-Lopez B, Mali A, Saha R, Chowdhury R. Robust Prediction of Enzyme Variant Kinetics with RealKcat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637555. [PMID: 39990461 PMCID: PMC11844551 DOI: 10.1101/2025.02.10.637555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Accurate prediction of kinetic parameters is crucial for understanding known and tailoring novel enzymes for biocatalysis. Current models fail to capture mutation effects on catalytically essential residues, limiting their utility in enzyme design. We grid-searched through ten model architectures (25,671 hyperparameter combinations) to identify a gradient-based additive framework called RealKcat, trained on 27,176 experimental entries curated manually (KinHub-27k) by screening 2,158 articles. Clustering catalytic turnover (k cat ) and substrate affinity (K M ) by rational orders of magnitude, RealKcat achieves >85% test accuracy, demonstrating highest sensitivity to mutation-induced variability thus far, and is the first-of-its-kind-model to demonstrate complete loss of activity upon deletion of the catalytic apparatus. Finally, state-of-the-art k cat validation accuracy (96%) on alkaline phosphatase (PafA) mutant industrial dataset confirms RealKcat's generalizability in learning per-residue catalytic relevance.
Collapse
Affiliation(s)
- Karuna Anna Sajeevan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
- The Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, USA
| | - Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arunraj B
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Sakib Ferdous
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Nabia Shahreen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohammed Sakib Noor
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Shashank Koneru
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Rahil Salehi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Brisa Calderon-Lopez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Ankur Mali
- Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
- The Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Aldehoff AS, Türkowsky D, Lohmann P, Homsi MN, Rolle-Kampczyk U, Ueberham E, Lehmann J, Bergen MV, Jehmlich N, Haange SB. Revealing novel protein interaction partners of glyphosate in Escherichia coli. ENVIRONMENT INTERNATIONAL 2025; 195:109243. [PMID: 39733591 DOI: 10.1016/j.envint.2024.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea. Most microbes, including the gut bacterium Escherichia coli (E. coli), possess a glyphosate-sensitive class I EPSPS, making them vulnerable to glyphosate's effects. Yet, little is known about glyphosate's interactions with other bacterial proteins or its broader modes of action at the proteome level. Here, we employed a quantitative proteomics and thermal proteome profiling (TPP) approach to identify novel protein binding partners of glyphosate in the E. coli proteome. Glyphosate exposure significantly altered amino acid synthesizing pathways. The abundance of shikimate pathway proteins was increased, suggesting a compensatory mechanism. Extracellular riboflavin concentrations were elevated upon glyphosate exposure, while intracellular levels remained stable. Beyond the target enzyme EPSPS, thermal proteome profiling indicated an effect of glyphosate on the thermal stability of certain proteins, including AroH and ProA, indicating interactions. Similar to the competitive binding between PEP and glyphosate at EPSPS, one reason for the interaction of AroH and ProA with the herbicide could be a high structural similarity between their substrates and glyphosate. Overall, glyphosate induced metabolic disturbances in E. coli, extending beyond its primary target, thereby providing new insights into glyphosate's broader impact on microbial systems.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Dominique Türkowsky
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Patrick Lohmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Masun Nabhan Homsi
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department Preclinical Development and Validation, Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department Preclinical Development and Validation, Leipzig, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Leipzig-Frankfurt-Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany.
| | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| |
Collapse
|
7
|
Oulia F, Charton P, Lo-Thong-Viramoutou O, Acevedo-Rocha CG, Liu W, Huynh D, Damour C, Wang J, Cadet F. Metabolic Fluxes Using Deep Learning Based on Enzyme Variations: Application to Glycolysis in Entamoeba histolytica. Int J Mol Sci 2024; 25:13390. [PMID: 39769154 PMCID: PMC11676880 DOI: 10.3390/ijms252413390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic pathway modeling, essential for understanding organism metabolism, is pivotal in predicting genetic mutation effects, drug design, and biofuel development. Enhancing these modeling techniques is crucial for achieving greater prediction accuracy and reliability. However, the limited experimental data or the complexity of the pathway makes it challenging for researchers to predict phenotypes. Deep learning (DL) is known to perform better than other Machine Learning (ML) approaches if the right conditions are met (i.e., a large database and good choice of parameters). Here, we use a knowledge-based model to massively generate synthetic data and extend a small initial dataset of experimental values. The main objective is to assess if DL can perform at least as well as other ML approaches in flux prediction, using 68,950 instances. Two processing methods are used to generate DL models: cross-validation and repeated holdout evaluation. DL models predict the metabolic fluxes with high precision and slightly outperform the best-known ML approach (the Cubist model) with a lower RMSE (≤0.01) in both cases. They also outperform the PLS model (RMSE ≥ 30). This study is the first to use DL to predict the overall flux of a metabolic pathway only from variations of enzyme concentrations.
Collapse
Affiliation(s)
- Freddy Oulia
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
| | - Philippe Charton
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
| | - Ophélie Lo-Thong-Viramoutou
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
| | - Carlos G. Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Wei Liu
- Department of Computer Science and Software Engineering, School of Physics, Mathematics and Computing, The University of Western Australia, Perth 6009, Australia; (W.L.); (D.H.)
| | - Du Huynh
- Department of Computer Science and Software Engineering, School of Physics, Mathematics and Computing, The University of Western Australia, Perth 6009, Australia; (W.L.); (D.H.)
| | - Cédric Damour
- EnergyLab, EA 4079, Faculty of Sciences and Technology, University of Reunion, 97490 Saint-Denis, France;
| | - Jingbo Wang
- Department of Physics, School of Physics, Mathematics and Computing, The University of Western Australia, Perth 6009, Australia;
| | - Frederic Cadet
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
- Artificial Intelligence Department, PEACCEL, 75013 Paris, France
| |
Collapse
|
8
|
Chen Z, Wang L. Process simulation and evaluation of scaled-up biocatalytic systems: Advances, challenges, and future prospects. Biotechnol Adv 2024; 77:108470. [PMID: 39437878 DOI: 10.1016/j.biotechadv.2024.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the increased demand for bio-based products and the rapid development of biomanufacturing technologies, biocatalytic reactions including microorganisms and enzyme based, have become promising approaches. Prior to the scale-up of production process, environmental and economic feasibility analysis are essential for the development of a sustainable and intelligent bioeconomy in the context of industry 4.0. To achieve these goals, process simulation supports system optimization, improves energy and resource utilization efficiencies, and supports digital bioprocessing. However, due to the insufficient understanding of cellular metabolism and interaction mechanisms, there is still a lack of rational and transparent simulation tools to efficiently simulate, control, and optimize microbial/enzymatic reaction processes. Therefore, there is an urgent need to develop frameworks that integrate kinetic modeling, process simulation, and sustainability analysis for bioreaction simulations and their optimization. This review summarizes and compares the advantages and disadvantages of different process simulation software and models in simulating biocatalytic processes, identifies the limitations of traditional reaction kinetics models, and proposes the requirement of simulations close to real reactions. In addition, we explore the current state of kinetic modeling at the microscopic scale and how process simulation can be linked to kinetic models of cellular metabolism and computational fluid dynamics modeling. Finally, this review discusses the requirement of sensitivity analysis and how machine learning can assist with optimization of simulations to improve energy efficiency and product yields from techno-economic and life cycle assessment perspectives.
Collapse
Affiliation(s)
- Zhonghao Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
9
|
Khanijou JK, Hee YT, Scipion CPM, Chen X, Selvarajoo K. Systems biology approach for enhancing limonene yield by re-engineering Escherichia coli. NPJ Syst Biol Appl 2024; 10:109. [PMID: 39353984 PMCID: PMC11445242 DOI: 10.1038/s41540-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655. Firstly, we generated time-series metabolomics data and, secondly, developed a dynamic model based on enzyme dynamics to track the native metabolic networks and the engineered mevalonate pathway. After several iterations of model fitting with experimental profiles, which also included 13C-tracer studies, we performed in silico knockouts (KOs) of all enzymes to identify bottleneck(s) for optimal limonene yields. The simulations indicated that ALDH/ADH (aldehyde dehydrogenase/alcohol dehydrogenase) and LDH (lactate dehydrogenase) suppression, and HK (hexokinase) enhancement would increase limonene yields. Experimental confirmation was achieved, where ALDH-ADH and LDH KOs, and HK overexpression improved limonene yield by 8- to 11-fold. Our systems biology approach can guide microbial strain re-engineering for optimal target production.
Collapse
Affiliation(s)
- Jasmeet Kaur Khanijou
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Yan Ting Hee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore
| | | | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, Singapore.
| |
Collapse
|
10
|
García-Mogollón CA, Mendoza DF, Quintero-Díaz JC. Electrostatic ethanol fermentation: Experimental study and kinetic-based metabolic modeling. Heliyon 2024; 10:e36587. [PMID: 39281627 PMCID: PMC11401030 DOI: 10.1016/j.heliyon.2024.e36587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Due to the electrical nature of the cell, it is possible to modulate its behavior through the application of non-lethal external electric fields to improve fermentation processes. In this work, a microbial cell system with a chamber and two electrodes inside and connected to a voltage source was used. One of the electrodes was kept isolated to create an electric field without the flow of current. Cultures with two ethanol-producing microbial strains (Saccharomyces cerevisiae and Zymomonas mobilis) were conducted in this device. The application of voltages between 0 and 18 V was evaluated to determine the impact of the generated electric field on ethanol production. To analyze the possible effect of the field on the central carbon metabolism in each strain, biochemical-based kinetic models were formulated to describe the experimental fermentation kinetics obtained. It was found that low applied voltages did not have significant effects on growth rate in either strain, but all voltages evaluated increased substrate consumption and ethanol production rate in Z. mobilis, while only 18 V affected these rates in S. cerevisiae, indicating that Z. mobilis was the most sensitive to the electric field. At the end of the fermentation, significant increases in ethanol yields of 10.7% and 19.5% were detected for S. cerevisiae and Z. mobilis, respectively. The proposed mathematical models showed that substrate transport through the membrane catalyzed by the phosphotransferase system (PTS) for Z. mobilis and hexose transport proteins mechanism and hexokinase (HK) activity for S. cerevisiae and the transformation of pyruvate to ethanol, catalyzed by the decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes, were the reactions most affected by the application of the external field.
Collapse
Affiliation(s)
| | - Diego F Mendoza
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| | - Juan Carlos Quintero-Díaz
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| |
Collapse
|
11
|
Hosoda S, Iwata H, Miura T, Tanabe M, Okada T, Mochizuki A, Sato M. BayesianSSA: a Bayesian statistical model based on structural sensitivity analysis for predicting responses to enzyme perturbations in metabolic networks. BMC Bioinformatics 2024; 25:297. [PMID: 39256657 PMCID: PMC11389226 DOI: 10.1186/s12859-024-05921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Chemical bioproduction has attracted attention as a key technology in a decarbonized society. In computational design for chemical bioproduction, it is necessary to predict changes in metabolic fluxes when up-/down-regulating enzymatic reactions, that is, responses of the system to enzyme perturbations. Structural sensitivity analysis (SSA) was previously developed as a method to predict qualitative responses to enzyme perturbations on the basis of the structural information of the reaction network. However, the network structural information can sometimes be insufficient to predict qualitative responses unambiguously, which is a practical issue in bioproduction applications. To address this, in this study, we propose BayesianSSA, a Bayesian statistical model based on SSA. BayesianSSA extracts environmental information from perturbation datasets collected in environments of interest and integrates it into SSA predictions. RESULTS We applied BayesianSSA to synthetic and real datasets of the central metabolic pathway of Escherichia coli. Our result demonstrates that BayesianSSA can successfully integrate environmental information extracted from perturbation data into SSA predictions. In addition, the posterior distribution estimated by BayesianSSA can be associated with the known pathway reported to enhance succinate export flux in previous studies. CONCLUSIONS We believe that BayesianSSA will accelerate the chemical bioproduction process and contribute to advancements in the field.
Collapse
Affiliation(s)
- Shion Hosoda
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan.
| | - Hisashi Iwata
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| | - Takuya Miura
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| | - Maiko Tanabe
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| | - Takashi Okada
- Laboratory of Mathematical Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Atsushi Mochizuki
- Laboratory of Mathematical Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Miwa Sato
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| |
Collapse
|
12
|
Wang N, Zang ZH, Sun BB, Li B, Tian JL. Recent advances in computational prediction of molecular properties in food chemistry. Food Res Int 2024; 192:114776. [PMID: 39147479 DOI: 10.1016/j.foodres.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The combination of food chemistry and computational simulation has brought many impacts to food research, moving from experimental chemistry to computer chemistry. This paper will systematically review in detail the important role played by computational simulations in the development of the molecular structure of food, mainly from the atomic, molecular, and multicomponent dimension. It will also discuss how different computational chemistry models can be constructed and analyzed to obtain reliable conclusions. From the calculation principle to case analysis, this paper focuses on the selection and application of quantum mechanics, molecular mechanics and coarse-grained molecular dynamics in food chemistry research. Finally, experiments and computations of food chemistry are compared and summarized to obtain the best balance between them. The above review and outlook will provide an important reference for the intersection of food chemistry and computational chemistry, and is expected to provide innovative thinking for structural research in food chemistry.
Collapse
Affiliation(s)
- Nuo Wang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhi-Huan Zang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bing-Bing Sun
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China.
| |
Collapse
|
13
|
Chi J, Shu J, Li M, Mudappathi R, Jin Y, Lewis F, Boon A, Qin X, Liu L, Gu H. Artificial Intelligence in Metabolomics: A Current Review. Trends Analyt Chem 2024; 178:117852. [PMID: 39071116 PMCID: PMC11271759 DOI: 10.1016/j.trac.2024.117852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Metabolomics and artificial intelligence (AI) form a synergistic partnership. Metabolomics generates large datasets comprising hundreds to thousands of metabolites with complex relationships. AI, aiming to mimic human intelligence through computational modeling, possesses extraordinary capabilities for big data analysis. In this review, we provide a recent overview of the methodologies and applications of AI in metabolomics studies in the context of systems biology and human health. We first introduce the AI concept, history, and key algorithms for machine learning and deep learning, summarizing their strengths and weaknesses. We then discuss studies that have successfully used AI across different aspects of metabolomic analysis, including analytical detection, data preprocessing, biomarker discovery, predictive modeling, and multi-omics data integration. Lastly, we discuss the existing challenges and future perspectives in this rapidly evolving field. Despite limitations and challenges, the combination of metabolomics and AI holds great promises for revolutionary advancements in enhancing human health.
Collapse
Affiliation(s)
- Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Ming Li
- Phoenix VA Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Rekha Mudappathi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Freeman Lewis
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Xiaoyan Qin
- College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
14
|
Lu H, Xiao L, Liao W, Yan X, Nielsen J. Cell factory design with advanced metabolic modelling empowered by artificial intelligence. Metab Eng 2024; 85:61-72. [PMID: 39038602 DOI: 10.1016/j.ymben.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Advances in synthetic biology and artificial intelligence (AI) have provided new opportunities for modern biotechnology. High-performance cell factories, the backbone of industrial biotechnology, are ultimately responsible for determining whether a bio-based product succeeds or fails in the fierce competition with petroleum-based products. To date, one of the greatest challenges in synthetic biology is the creation of high-performance cell factories in a consistent and efficient manner. As so-called white-box models, numerous metabolic network models have been developed and used in computational strain design. Moreover, great progress has been made in AI-powered strain engineering in recent years. Both approaches have advantages and disadvantages. Therefore, the deep integration of AI with metabolic models is crucial for the construction of superior cell factories with higher titres, yields and production rates. The detailed applications of the latest advanced metabolic models and AI in computational strain design are summarized in this review. Additionally, approaches for the deep integration of AI and metabolic models are discussed. It is anticipated that advanced mechanistic metabolic models powered by AI will pave the way for the efficient construction of powerful industrial chassis strains in the coming years.
Collapse
Affiliation(s)
- Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Luchi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenbin Liao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuefeng Yan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jens Nielsen
- BioInnovation Institute, Ole Måløes Vej, DK2200, Copenhagen N, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96, Gothenburg, Sweden.
| |
Collapse
|
15
|
Choudhury S, Narayanan B, Moret M, Hatzimanikatis V, Miskovic L. Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states. Nat Catal 2024; 7:1086-1098. [PMID: 39463726 PMCID: PMC11499278 DOI: 10.1038/s41929-024-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2024] [Indexed: 10/29/2024]
Abstract
Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in Escherichia coli. It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology.
Collapse
Affiliation(s)
- Subham Choudhury
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bharath Narayanan
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael Moret
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Xu S, Xu T, Yang Y, Chen X. Learning metabolic dynamics from irregular observations by Bidirectional Time-Series State Transfer Network. mSystems 2024; 9:e0069724. [PMID: 39057922 PMCID: PMC11334518 DOI: 10.1128/msystems.00697-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Modeling microbial metabolic dynamics is important for the rational optimization of both biosynthetic systems and industrial processes to facilitate green and efficient biomanufacturing. Classical approaches utilize explicit equation systems to represent metabolic networks, enabling the quantification of pathway fluxes to identify metabolic bottlenecks. However, these white-box models, despite their diverse applications, have limitations in simulating metabolic dynamics and are intrinsically inaccurate for industrial strains that lack information on network structures and kinetic parameters. On the other hand, black-box models do not rely on prior mechanistic knowledge of strains but are built upon observed time-series trajectories of biosynthetic systems in action. In practice, these observations are typically irregular, with discontinuously observed time points across multiple independent batches, each time point potentially containing missing measurements. Learning from such irregular data remains challenging for existing approaches. To address this issue, we present the Bidirectional Time-Series State Transfer Network (BTSTN) for modeling metabolic dynamics directly from irregular observations. Using evaluation data sets derived from both ideal dynamic systems and a real-world fermentation process, we demonstrate that BTSTN accurately reconstructs dynamic behaviors and predicts future trajectories. This approach exhibits enhanced robustness against missing measurements and noise, as compared to the state-of-the-art methods.IMPORTANCEIndustrial biosynthetic systems often involve strains with unclear genetic backgrounds, posing challenges in modeling their distinct metabolic dynamics. In such scenarios, white-box models, which commonly rely on inferred networks, are thereby of limited applicability and accuracy. In contrast, black-box models, such as statistical models and neural networks, are directly fitted or learned from observed time-series trajectories of biosynthetic systems in action. These methods typically assume regular observations without missing time points or measurements. If the observations are irregular, a pre-processing step becomes necessary to obtain a fully filled data set for subsequent model training, which, at the same time, inevitably introduces errors into the resulting models. BTSTN is a novel approach that natively learns from irregular observations. This distinctive feature makes it a unique addition to the current arsenal of technologies modeling metabolic dynamics.
Collapse
Affiliation(s)
- Shaohua Xu
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Ting Xu
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Yang
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Chen
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
17
|
Puniya BL, Verma M, Damiani C, Bakr S, Dräger A. Perspectives on computational modeling of biological systems and the significance of the SysMod community. BIOINFORMATICS ADVANCES 2024; 4:vbae090. [PMID: 38948011 PMCID: PMC11213628 DOI: 10.1093/bioadv/vbae090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Motivation In recent years, applying computational modeling to systems biology has caused a substantial surge in both discovery and practical applications and a significant shift in our understanding of the complexity inherent in biological systems. Results In this perspective article, we briefly overview computational modeling in biology, highlighting recent advancements such as multi-scale modeling due to the omics revolution, single-cell technology, and integration of artificial intelligence and machine learning approaches. We also discuss the primary challenges faced: integration, standardization, model complexity, scalability, and interdisciplinary collaboration. Lastly, we highlight the contribution made by the Computational Modeling of Biological Systems (SysMod) Community of Special Interest (COSI) associated with the International Society of Computational Biology (ISCB) in driving progress within this rapidly evolving field through community engagement (via both in person and virtual meetings, social media interactions), webinars, and conferences. Availability and implementation Additional information about SysMod is available at https://sysmod.info.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Meghna Verma
- Systems Medicine, Clinical Pharmacology and Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20878, United States
| | - Chiara Damiani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Shaimaa Bakr
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA 94305-5479, United States
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen 72076, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| |
Collapse
|
18
|
Zielinski DC, Matos MR, de Bree JE, Glass K, Sonnenschein N, Palsson BO. Bottom-up parameterization of enzyme rate constants: Reconciling inconsistent data. Metab Eng Commun 2024; 18:e00234. [PMID: 38711578 PMCID: PMC11070925 DOI: 10.1016/j.mec.2024.e00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Kinetic models of metabolism are promising platforms for studying complex metabolic systems and designing production strains. Given the availability of enzyme kinetic data from historical experiments and machine learning estimation tools, a straightforward modeling approach is to assemble kinetic data enzyme by enzyme until a desired scale is reached. However, this type of 'bottom up' parameterization of kinetic models has been difficult due to a number of issues including gaps in kinetic parameters, the complexity of enzyme mechanisms, inconsistencies between parameters obtained from different sources, and in vitro-in vivo differences. Here, we present a computational workflow for the robust estimation of kinetic parameters for detailed mass action enzyme models while taking into account parameter uncertainty. The resulting software package, termed MASSef (the Mass Action Stoichiometry Simulation Enzyme Fitting package), can handle standard 'macroscopic' kinetic parameters, including Km, kcat, Ki, Keq, and nh, as well as diverse reaction mechanisms defined in terms of mass action reactions and 'microscopic' rate constants. We provide three enzyme case studies demonstrating that this approach can identify and reconcile inconsistent data either within in vitro experiments or between in vitro and in vivo enzyme function. We further demonstrate how parameterized enzyme modules can be used to assemble pathway-scale kinetic models consistent with in vivo behavior. This work builds on the legacy of knowledge on kinetic behavior of enzymes by enabling robust parameterization of enzyme kinetic models at scale utilizing the abundance of historical literature data and machine learning parameter estimates.
Collapse
Affiliation(s)
- Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Marta R.A. Matos
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - James E. de Bree
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Kevin Glass
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
19
|
Burger PB, Hu X, Balabin I, Muller M, Stanley M, Joubert F, Kaiser TM. FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology. J Chem Inf Model 2024; 64:3812-3825. [PMID: 38651738 PMCID: PMC11094716 DOI: 10.1021/acs.jcim.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
In the realm of medicinal chemistry, the primary objective is to swiftly optimize a multitude of chemical properties of a set of compounds to yield a clinical candidate poised for clinical trials. In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist's toolbox to enhance the efficiency of both hit optimization and candidate design. Both computational methods come with their own set of limitations, and they are often used independently of each other. ML's capability to screen extensive compound libraries expediently is tempered by its reliance on quality data, which can be scarce especially during early-stage optimization. Contrarily, physics-based approaches like free energy perturbation (FEP) are frequently constrained by low throughput and high cost by comparison; however, physics-based methods are capable of making highly accurate binding affinity predictions. In this study, we harnessed the strength of FEP to overcome data paucity in ML by generating virtual activity data sets which then inform the training of algorithms. Here, we show that ML algorithms trained with an FEP-augmented data set could achieve comparable predictive accuracy to data sets trained on experimental data from biological assays. Throughout the paper, we emphasize key mechanistic considerations that must be taken into account when aiming to augment data sets and lay the groundwork for successful implementation. Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. We believe that the physics-based augmentation of ML will significantly benefit drug discovery, as these techniques continue to evolve.
Collapse
Affiliation(s)
- Pieter B. Burger
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| | - Xiaohu Hu
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Ilya Balabin
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| | - Morné Muller
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| | - Megan Stanley
- Microsoft
Research AI4Science, 21 Station Road, Cambridge CB1 2FB, U.K.
| | - Fourie Joubert
- Centre
for Bioinformatics and Computational Biology, Department of Biochemistry,
Genetics and Microbiology, University of
Pretoria, Pretoria 0001, South Africa
| | - Thomas M. Kaiser
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| |
Collapse
|
20
|
Mujahid O, Contreras I, Beneyto A, Vehi J. Generative deep learning for the development of a type 1 diabetes simulator. COMMUNICATIONS MEDICINE 2024; 4:51. [PMID: 38493243 PMCID: PMC10944502 DOI: 10.1038/s43856-024-00476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) simulators, crucial for advancing diabetes treatments, often fall short of capturing the entire complexity of the glucose-insulin system due to the imprecise approximation of the physiological models. This study introduces a simulation approach employing a conditional deep generative model. The aim is to overcome the limitations of existing T1D simulators by synthesizing virtual patients that more accurately represent the entire glucose-insulin system physiology. METHODS Our methodology utilizes a sequence-to-sequence generative adversarial network to simulate virtual T1D patients causally. Causality is embedded in the model by introducing shifted input-output pairs during training, with a 90-min shift capturing the impact of input insulin and carbohydrates on blood glucose. To validate our approach, we train and evaluate the model using three distinct datasets, each consisting of 27, 12, and 10 T1D patients, respectively. In addition, we subject the trained model to further validation for closed-loop therapy, employing a state-of-the-art controller. RESULTS The generated patients display statistical similarity to real patients when evaluated on the time-in-range results for each of the standard blood glucose ranges in T1D management along with means and variability outcomes. When tested for causality, authentic causal links are identified between the insulin, carbohydrates, and blood glucose levels of the virtual patients. The trained generative model demonstrates behaviours that are closer to reality compared to conventional T1D simulators when subjected to closed-loop insulin therapy using a state-of-the-art controller. CONCLUSIONS These results highlight our approach's capability to accurately capture physiological dynamics and establish genuine causal relationships, holding promise for enhancing the development and evaluation of therapies in diabetes.
Collapse
Affiliation(s)
- Omer Mujahid
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain
| | - Ivan Contreras
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain
| | - Aleix Beneyto
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain
| | - Josep Vehi
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Girona, Spain.
| |
Collapse
|
21
|
Zhong Z, Hou J, Yao Z, Dong L, Liu F, Yue J, Wu T, Zheng J, Ouyang G, Yang C, Song J. Domain generalization enables general cancer cell annotation in single-cell and spatial transcriptomics. Nat Commun 2024; 15:1929. [PMID: 38431724 PMCID: PMC10908802 DOI: 10.1038/s41467-024-46413-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Single-cell and spatial transcriptome sequencing, two recently optimized transcriptome sequencing methods, are increasingly used to study cancer and related diseases. Cell annotation, particularly for malignant cell annotation, is essential and crucial for in-depth analyses in these studies. However, current algorithms lack accuracy and generalization, making it difficult to consistently and rapidly infer malignant cells from pan-cancer data. To address this issue, we present Cancer-Finder, a domain generalization-based deep-learning algorithm that can rapidly identify malignant cells in single-cell data with an average accuracy of 95.16%. More importantly, by replacing the single-cell training data with spatial transcriptomic datasets, Cancer-Finder can accurately identify malignant spots on spatial slides. Applying Cancer-Finder to 5 clear cell renal cell carcinoma spatial transcriptomic samples, Cancer-Finder demonstrates a good ability to identify malignant spots and identifies a gene signature consisting of 10 genes that are significantly co-localized and enriched at the tumor-normal interface and have a strong correlation with the prognosis of clear cell renal cell carcinoma patients. In conclusion, Cancer-Finder is an efficient and extensible tool for malignant cell annotation.
Collapse
Affiliation(s)
- Zhixing Zhong
- Institute of Artificial Intelligence, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361102, China
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junchen Hou
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixian Yao
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Feng Liu
- School of Computing and Information Systems, The University of Melbourne, Carlton, Melbourne, VIC, 3053, Australia
| | - Junqiu Yue
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tiantian Wu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Junhua Zheng
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gaoliang Ouyang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chaoyong Yang
- Institute of Artificial Intelligence, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361102, China
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
22
|
Kugler A, Stensjö K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab Eng 2024; 82:171-182. [PMID: 38395194 DOI: 10.1016/j.ymben.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
23
|
Cautereels C, Smets J, Bircham P, De Ruysscher D, Zimmermann A, De Rijk P, Steensels J, Gorkovskiy A, Masschelein J, Verstrepen KJ. Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast. Nat Commun 2024; 15:1112. [PMID: 38326309 PMCID: PMC10850122 DOI: 10.1038/s41467-024-44997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Microbes are increasingly employed as cell factories to produce biomolecules. This often involves the expression of complex heterologous biosynthesis pathways in host strains. Achieving maximal product yields and avoiding build-up of (toxic) intermediates requires balanced expression of every pathway gene. However, despite progress in metabolic modeling, the optimization of gene expression still heavily relies on trial-and-error. Here, we report an approach for in vivo, multiplexed Gene Expression Modification by LoxPsym-Cre Recombination (GEMbLeR). GEMbLeR exploits orthogonal LoxPsym sites to independently shuffle promoter and terminator modules at distinct genomic loci. This approach facilitates creation of large strain libraries, in which expression of every pathway gene ranges over 120-fold and each strain harbors a unique expression profile. When applied to the biosynthetic pathway of astaxanthin, an industrially relevant antioxidant, a single round of GEMbLeR improved pathway flux and doubled production titers. Together, this shows that GEMbLeR allows rapid and efficient gene expression optimization in heterologous biosynthetic pathways, offering possibilities for enhancing the performance of microbial cell factories.
Collapse
Affiliation(s)
- Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Jolien Smets
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter Bircham
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Dries De Ruysscher
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Joleen Masschelein
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium.
| |
Collapse
|
24
|
Narayanan B, Weilandt D, Masid M, Miskovic L, Hatzimanikatis V. Rational strain design with minimal phenotype perturbation. Nat Commun 2024; 15:723. [PMID: 38267425 PMCID: PMC10808392 DOI: 10.1038/s41467-024-44831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Devising genetic interventions for desired cellular phenotypes remains challenging regarding time and resources. Kinetic models can accelerate this task by simulating metabolic responses to genetic perturbations. However, exhaustive design evaluations with kinetic models are computationally impractical, especially when targeting multiple enzymes. Here, we introduce a framework for efficiently scouting the design space while respecting cellular physiological requirements. The framework employs mixed-integer linear programming and nonlinear simulations with large-scale nonlinear kinetic models to devise genetic interventions while accounting for the network effects of these perturbations. Importantly, it ensures the engineered strain's robustness by maintaining its phenotype close to that of the reference strain. The framework, applied to improve the anthranilate production in E. coli, devises designs for experimental implementation, including eight previously experimentally validated targets. We expect this framework to play a crucial role in future design-build-test-learn cycles, significantly expediting the strain design compared to exhaustive design enumeration.
Collapse
Affiliation(s)
- Bharath Narayanan
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Daniel Weilandt
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Maria Masid
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
Boob AG, Chen J, Zhao H. Enabling pathway design by multiplex experimentation and machine learning. Metab Eng 2024; 81:70-87. [PMID: 38040110 DOI: 10.1016/j.ymben.2023.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The remarkable metabolic diversity observed in nature has provided a foundation for sustainable production of a wide array of valuable molecules. However, transferring the biosynthetic pathway to the desired host often runs into inherent failures that arise from intermediate accumulation and reduced flux resulting from competing pathways within the host cell. Moreover, the conventional trial and error methods utilized in pathway optimization struggle to fully grasp the intricacies of installed pathways, leading to time-consuming and labor-intensive experiments, ultimately resulting in suboptimal yields. Considering these obstacles, there is a pressing need to explore the enzyme expression landscape and identify the optimal pathway configuration for enhanced production of molecules. This review delves into recent advancements in pathway engineering, with a focus on multiplex experimentation and machine learning techniques. These approaches play a pivotal role in overcoming the limitations of traditional methods, enabling exploration of a broader design space and increasing the likelihood of discovering optimal pathway configurations for enhanced production of molecules. We discuss several tools and strategies for pathway design, construction, and optimization for sustainable and cost-effective microbial production of molecules ranging from bulk to fine chemicals. We also highlight major successes in academia and industry through compelling case studies.
Collapse
Affiliation(s)
- Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junyu Chen
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
| |
Collapse
|
26
|
Kulakowski S, Banerjee D, Scown CD, Mukhopadhyay A. Improving microbial bioproduction under low-oxygen conditions. Curr Opin Biotechnol 2023; 84:103016. [PMID: 37924688 DOI: 10.1016/j.copbio.2023.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 11/06/2023]
Abstract
Microbial bioconversion provides access to a wide range of sustainably produced chemicals and commodities. However, industrial-scale bioproduction process operations are preferred to be anaerobic due to the cost associated with oxygen transfer. Anaerobic bioconversion generally offers limited substrate utilization profiles, lower product yields, and reduced final product diversity compared with aerobic processes. Bioproduction under conditions of reduced oxygen can overcome the limitations of fully aerobic and anaerobic bioprocesses, but many microbial hosts are not developed for low-oxygen bioproduction. Here, we describe advances in microbial strain engineering involving the use of redox cofactor engineering, genome-scale metabolic modeling, and functional genomics to enable improved bioproduction processes under low oxygen and provide a viable path for scaling these bioproduction systems to industrial scales.
Collapse
Affiliation(s)
- Shawn Kulakowski
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corinne D Scown
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Basile A, Zampieri G, Kovalovszki A, Karkaria B, Treu L, Patil KR, Campanaro S. Modelling of microbial interactions in anaerobic digestion: from black to glass box. Curr Opin Microbiol 2023; 75:102363. [PMID: 37542746 DOI: 10.1016/j.mib.2023.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Anaerobic and microaerophilic environments are pervasive in nature, providing essential contributions to the maintenance of human health, biogeochemical cycles and the Earth's climate. These ecological niches are characterised by low free oxygen and oxidants, or lack thereof. Under these conditions, interactions between species are essential for supporting the growth of syntrophic species and maintaining thermodynamic feasibility of anaerobic fermentation. Kinetic models provide a simplified view of complex metabolic networks, while genome-scale metabolic models and flux-balance analysis (FBA) aim to unravel these systems as a whole. The target of this review is to outline the main similarities, differences and challenges associated with kinetic and metabolic modelling, and describe state-of-the-art modelling practices for studying syntrophies in the anaerobic digestion (AD) case study.
Collapse
Affiliation(s)
- Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Guido Zampieri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Adam Kovalovszki
- Department of Environmental and Resource Engineering, Technical University of Denmark, Building 115, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Behzad Karkaria
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy.
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| |
Collapse
|
28
|
Wendering P, Nikoloski Z. Model-driven insights into the effects of temperature on metabolism. Biotechnol Adv 2023; 67:108203. [PMID: 37348662 DOI: 10.1016/j.biotechadv.2023.108203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| |
Collapse
|
29
|
Karlsen ST, Rau MH, Sánchez BJ, Jensen K, Zeidan AA. From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry. FEMS Microbiol Rev 2023; 47:fuad030. [PMID: 37286882 PMCID: PMC10337747 DOI: 10.1093/femsre/fuad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.
Collapse
Affiliation(s)
- Signe T Karlsen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Martin H Rau
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Benjamín J Sánchez
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Kristian Jensen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Ahmad A Zeidan
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
30
|
Gawthrop PJ, Pan M. Sensitivity analysis of biochemical systems using bond graphs. J R Soc Interface 2023; 20:20230192. [PMID: 37464805 DOI: 10.1098/rsif.2023.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
The sensitivity of systems biology models to parameter variation can give insights into which parameters are most important for physiological function, and also direct efforts to estimate parameters. However, in general, kinetic models of biochemical systems do not remain thermodynamically consistent after perturbing parameters. To address this issue, we analyse the sensitivity of biological reaction networks in the context of a bond graph representation. We find that the parameter sensitivities can themselves be represented as bond graph components, mirroring potential mechanisms for controlling biochemistry. In particular, a sensitivity system is derived which re-expresses parameter variation as additional system inputs. The sensitivity system is then linearized with respect to these new inputs to derive a linear system which can be used to give local sensitivity to parameters in terms of linear system properties such as gain and time constant. This linear system can also be used to find so-called sloppy parameters in biological models. We verify our approach using a model of the Pentose Phosphate Pathway, confirming the reactions and metabolites most essential to maintaining the function of the pathway.
Collapse
Affiliation(s)
- Peter J Gawthrop
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michael Pan
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Helleckes LM, Hemmerich J, Wiechert W, von Lieres E, Grünberger A. Machine learning in bioprocess development: from promise to practice. Trends Biotechnol 2023; 41:817-835. [PMID: 36456404 DOI: 10.1016/j.tibtech.2022.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Fostered by novel analytical techniques, digitalization, and automation, modern bioprocess development provides large amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have great potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. Herein we demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring, and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges, and point out domains that can potentially benefit from technology transfer and further progress in the field of ML.
Collapse
Affiliation(s)
- Laura M Helleckes
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Johannes Hemmerich
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Wolfgang Wiechert
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Eric von Lieres
- Institute for Bio- and Geosciences (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; Institute of Process Engineering in Life Sciences, Section III: Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
| |
Collapse
|