1
|
Nussinov R, Yavuz BR, Jang H. Molecular principles underlying aggressive cancers. Signal Transduct Target Ther 2025; 10:42. [PMID: 39956859 PMCID: PMC11830828 DOI: 10.1038/s41392-025-02129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Aggressive tumors pose ultra-challenges to drug resistance. Anti-cancer treatments are often unsuccessful, and single-cell technologies to rein drug resistance mechanisms are still fruitless. The National Cancer Institute defines aggressive cancers at the tissue level, describing them as those that spread rapidly, despite severe treatment. At the molecular, foundational level, the quantitative biophysics discipline defines aggressive cancers as harboring a large number of (overexpressed, or mutated) crucial signaling proteins in major proliferation pathways populating their active conformations, primed for their signal transduction roles. This comprehensive review explores highly aggressive cancers on the foundational and cell signaling levels, focusing on the differences between highly aggressive cancers and the more treatable ones. It showcases aggressive tumors as harboring massive, cancer-promoting, catalysis-primed oncogenic proteins, especially through certain overexpression scenarios, as predisposed aggressive tumor candidates. Our examples narrate strong activation of ERK1/2, and other oncogenic proteins, through malfunctioning chromatin and crosslinked signaling, and how they activate multiple proliferation pathways. They show the increased cancer heterogeneity, plasticity, and drug resistance. Our review formulates the principles underlying cancer aggressiveness on the molecular level, discusses scenarios, and describes drug regimen (single drugs and drug combinations) for PDAC, NSCLC, CRC, HCC, breast and prostate cancers, glioblastoma, neuroblastoma, and leukemia as examples. All show overexpression scenarios of master transcription factors, transcription factors with gene fusions, copy number alterations, dysregulation of the epigenetic codes and epithelial-to-mesenchymal transitions in aggressive tumors, as well as high mutation loads of vital upstream signaling regulators, such as EGFR, c-MET, and K-Ras, befitting these principles.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
2
|
Arsiwala TA, Blethen KE, Wolford CP, Pecar GL, Panchal DM, Kielkowski BN, Wang P, Ranjan M, Carpenter JS, Finomore V, Rezai A, Lockman PR. Single Exposure to Low-Intensity Focused Ultrasound Causes Biphasic Opening of the Blood-Brain Barrier Through Secondary Mechanisms. Pharmaceutics 2025; 17:75. [PMID: 39861723 PMCID: PMC11768402 DOI: 10.3390/pharmaceutics17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objective: The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood. This study aimed to characterize the time-dependent changes in BBB permeability, transporter function, and inflammatory responses in both sonicated and non-sonicated brain tissues following LiFUS treatment. Methods: We employed in situ brain perfusion to assess alterations in BBB integrity and transporter function, as well as multiplex cytokine analysis to quantify the inflammatory response. Results: Our findings show that LiFUS significantly increased vascular volume and glucose uptake, with reduced P-gp function in brain tissues six hours post treatment, indicating biphasic BBB disruption. Additionally, elevated levels of pro-inflammatory cytokines, including TNF-α and IL-6, were observed in both sonicated and non-sonicated regions. A comparative analysis between wild-type and immunodeficient mice revealed distinct patterns of cytokine release, with immunodeficient mice showing lower serum concentrations of IFN-γ and TNF-α, highlighting the potential impact of immune status on the inflammatory response to LiFUS. Conclusions: This study provides new insights into the biphasic nature of LiFUS-induced BBB disruption, emphasizing the importance of understanding the timing and extent of secondary physiological changes.
Collapse
Affiliation(s)
- Tasneem A. Arsiwala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Kathryn E. Blethen
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Cullen P. Wolford
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Geoffrey L. Pecar
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Dhruvi M. Panchal
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Brooke N. Kielkowski
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Peng Wang
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Manish Ranjan
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Jeffrey S. Carpenter
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Victor Finomore
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Ali Rezai
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Paul R. Lockman
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| |
Collapse
|
3
|
Xing D, Xia G, Tang X, Zhuang Z, Shan J, Fang X, Qiu L, Zha X, Chen XL. A Multifunctional Nanocomposite Hydrogel Delivery System Based on Dual-Loaded Liposomes for Scarless Wound Healing. Adv Healthc Mater 2024; 13:e2401619. [PMID: 39011810 DOI: 10.1002/adhm.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Increased inflammatory responses and oxidative stress at the wound site following skin trauma impair healing. Furthermore, skin scarring places fibroblasts under severe mechanical stress and aggravates pathological fibrosis. A novel liposomal composite hydrogel is engineered for wound microenvironment remodeling, incorporating dual-loaded liposomes into gelatin methacrylate to create a nanocomposite hydrogel. Notably, tetrahydrocurcumin (THC) and hepatocyte growth factor (HGF) are encapsulated in the hydrophobic and hydrophilic layers of liposomes, respectively. The composite hydrogel maintains porous nanoarchitecture, demonstrating sustainable THC and HGF release and enhanced mechanical properties and biocompatibility. This system effectively promotes cell proliferation and angiogenesis and attenuates apoptosis. It decreases the expression of the inflammatory factors by inhibiting the high-mobility group box /receptor for advanced glycation end product/NF-κB (HMGB1/RAGE/NF-κB)pathway and increases macrophage polarization from M1 to M2 in vitro, effectively controlling inflammatory responses. It exhibits remarkable antioxidant properties by scavenging excess reactive oxygen species and free radicals. Most importantly, it effectively prevents scar formation by restraining the transforming growth factor beta (TGF-β)/Smads pathway that downregulates associated fibrotic factors. It demonstrates strong therapeutic effects against inflammation and fibrosis in a rat skin wound model with biosafety, advancing the development of innovative hydrogel-based therapeutic delivery strategies for clinical scarless wound therapy.
Collapse
Affiliation(s)
- Danlei Xing
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Guoqing Xia
- Institute for Liver Diseases of Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230022, P. R. China
| | - Xudong Tang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiwei Zhuang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xiao Fang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Le Qiu
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xu-Lin Chen
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| |
Collapse
|
4
|
Vasco C, Rizzo A, Cordiglieri C, Corsini E, Maderna E, Ciusani E, Salmaggi A. The Role of Adhesion Molecules and Extracellular Vesicles in an In Vitro Model of the Blood-Brain Barrier for Metastatic Disease. Cancers (Basel) 2023; 15:cancers15113045. [PMID: 37297006 DOI: 10.3390/cancers15113045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Metastatic brain disease (MBD) has seen major advances in clinical management, focal radiation therapy approaches and knowledge of biological factors leading to improved prognosis. Extracellular vesicles (EVs) have been found to play a role in tumor cross-talk with the target organ, contributing to the formation of a premetastatic niche. Human lung and breast cancer cell lines were characterized for adhesion molecule expression and used to evaluate their migration ability in an in vitro model. Conditioned culture media and isolated EVs, characterized by super resolution and electron microscopy, were tested to evaluate their pro-apoptotic properties on human umbilical vein endothelial cells (HUVECs) and human cerebral microvascular endothelial cells (HCMEC/D3) by annexin V binding assay. Our data showed a direct correlation between expression of ICAM1, ICAM2, β3-integrin and α2-integrin and the ability to firmly adhere to the blood-brain barrier (BBB) model, whereas the same molecules were down-regulated at a later step. Extracellular vesicles released by tumor cell lines were shown to be able to induce apoptosis in HUVEC while brain endothelial cells showed to be more resistant.
Collapse
Affiliation(s)
- Chiara Vasco
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Ambra Rizzo
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Chiara Cordiglieri
- Preclinical Neuroimmunology Lab, Neurology IV Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
- Imaging Facility, National Institute of Molucular Genetics (INGM) "Romeo ed Enrica Invernizzi", c/o Policlinico di Milano Hospital, Padiglione Invernizzi, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Elena Corsini
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Emanuela Maderna
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Andrea Salmaggi
- Neuroscience Department-Neurology/Stroke Unit, Ospedale A. Manzoni, ASST Lecco, 23900 Lecco, Italy
| |
Collapse
|
5
|
Arsiwala TA, Blethen KE, Wolford CP, Panchal DM, Sprowls SA, Fladeland RA, Kielkowski BN, Pritt TA, Wang P, Wilson O, Carpenter JS, Finomore V, Rezai A, Lockman PR. Blood-tumor barrier opening by MRI-guided transcranial focused ultrasound in a preclinical breast cancer brain metastasis model improves efficacy of combinatorial chemotherapy. Front Oncol 2023; 13:1104594. [PMID: 36845739 PMCID: PMC9950566 DOI: 10.3389/fonc.2023.1104594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Patients with metastatic breast cancer have high and continually increasing rates of brain metastases. During the course of the disease, brain metastases can occur in up to 30% of these patients. In most cases, brain metastases are diagnosed after significant disease progression. The blood-tumor barrier increases the difficulty of treating brain metastasis by preventing accumulation of chemotherapy within metastases at therapeutically effective concentrations. Traditional therapies, such as surgical resection, radiotherapy, and chemotherapy, have poor efficacy, as reflected by a low median survival rate of 5-8% after post-diagnosis. Low-intensity focused ultrasound (LiFUS) is a new treatment for enhancing drug accumulation within the brain and brain malignancies. In this study, we elucidate the effect of clinical LiFUS combined with chemotherapy on tumor survival and progression in a preclinical model of triple-negative breast cancer metastasis to the brain. LiFUS significantly increased the tumor accumulation of 14C-AIB and Texas Red compared to controls (p< 0.01). LiFUS-mediated opening of the BTB is size-dependent, which is consistent with our previous studies. Mice receiving LiFUS with combinatorial Doxil and paclitaxel showed a significant increase in median survival (60 days) compared to other groups. LiFUS plus combinatorial chemotherapy of paclitaxel and Doxil also showed the slowest progression of tumor burden compared to chemotherapy alone or individual chemotherapy and LiFUS combinations. This study shows that combining LiFUS with timed combinatorial chemotherapeutic treatment is a potential strategy for improving drug delivery to brain metastases.
Collapse
Affiliation(s)
- Tasneem A. Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
| | - Kathryn E. Blethen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
| | - Cullen P. Wolford
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
| | - Dhruvi M. Panchal
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
| | - Samuel A. Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross A. Fladeland
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
| | - Brooke N. Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
| | - Trenton A. Pritt
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
| | - Peng Wang
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Olivia Wilson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Jeffrey S. Carpenter
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, Morgantown, WV, United States
| | - Victor Finomore
- Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, Morgantown, WV, United States
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, Morgantown, WV, United States
| | - Paul R. Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, United States
- Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
6
|
|