1
|
Wang M, Liu H, Huang J, Cai T, Xu ZP, Zhang L. Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems. J Nanobiotechnology 2025; 23:362. [PMID: 40394591 PMCID: PMC12090605 DOI: 10.1186/s12951-025-03433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
Gene therapy holds immense potential due to its ability to precisely target oncogenes, making it a promising strategy for cancer treatment. Advances in genetic science and bioinformatics have expanded the applications of gene delivery technologies beyond detection and diagnosis to potential therapeutic interventions. However, traditional gene therapy faces significant challenges, including limited therapeutic efficacy and the rapid degradation of genetic materials in vivo. To address these limitations, multifunctional nanoparticles have been engineered to encapsulate and protect genetic materials, enhancing their stability and therapeutic effectiveness. Nanoparticles are being extensively explored for their ability to deliver various genetic payloads-including plasmid DNA, messenger RNA, and small interfering RNA-directly to cancer cells. This review highlights key gene modulation strategies such as RNA interference, gene editing systems, and chimeric antigen receptor (CAR) technologies, alongside a diverse array of nanoscale delivery systems composed of polymers, lipids, and inorganic materials. These nanoparticle-based delivery platforms aim to improve targeted transport of genetic material into cancer cells, ultimately enhancing the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Maoze Wang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
| | - Jinling Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
| | - Zhi Ping Xu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
2
|
Hu X, Chi H, Fu X, Chen J, Dong L, Jiang S, Li Y, Chen J, Cheng M, Min Q, Tian Y, Zhang P. Tunable Multivalent Aptamer-Based DNA Nanostructures To Regulate Multiheteroreceptor-Mediated Tumor Recognition. J Am Chem Soc 2024; 146:2514-2523. [PMID: 38247135 DOI: 10.1021/jacs.3c10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Precise mapping and regulation of cell surface receptors hold immense significance in disease treatment, such as cancer, infection, and neurodisorders, but also face enormous challenges. In this study, we designed a series of adjustable multivalent aptamer-based DNA nanostructures to precisely control their interaction with receptors in tumor cells. By profiling surface receptors on 12 cell lines using 10 different aptamers, we generated a heatmap that accurately distinguished between various tumor types based on multiple markers. We then incorporated these aptamers onto DNA origami structures to regulate receptor recognition, with patch-like structures demonstrating a tendency to be trapped on the cell surface and with tube-like structures showing a preference for internalization. Through precise control of aptamer species, valence, and geometric patterns, we found that multiheteroreceptor-mediated recognition not only favored the specific binding of nanostructures to tumor cells but also greatly enhanced intracellular uptake by promoting clathrin-dependent endocytosis. Specifically, we achieved over 5-fold uptake in different tumor cells versus normal cells using tube-like structures modified with different diheteroaptamer pairs, facilitating targeted drug delivery. Moreover, patch-like structures with triheteroaptamers guided specific interactions between macrophages and tumor cells, leading to effective immune clearance. This programmable multivalent system allows for the precise regulation of cell recognition using multiple parameters, demonstrating great potential for personalized tumor treatment.
Collapse
Affiliation(s)
- Xiaoxue Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Hongli Chi
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiaoyi Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jinling Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Linying Dong
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqi Jiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jingyi Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ming Cheng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qianhao Min
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Penghui Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|