1
|
Kawabata S, Iijima H, Kanemura N, Murata K. Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons. Mol Neurobiol 2025; 62:6112-6127. [PMID: 39714525 DOI: 10.1007/s12035-024-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons. We integrated multiple public transcriptome datasets for DRGs, which include cell bodies in neurons, and the sciatic nerve, which includes axons in neurons, using network medicine-based bioinformatics analysis. We thus inferred the molecular mechanisms involved in cellular senescence of DRG neurons, from molecular responses to senescence, in the DRG-sciatic nerve network. Network medicine-based bioinformatics analysis revealed that age-related Mapk3 decline leads to impaired cholesterol metabolism and biosynthetic function in axons, resulting in compensatory upregulation of Srebf1, a transcription factor involved in lipid and cholesterol metabolism. This in turn leads to CDKN2A-mediated cellular senescence. Furthermore, our analysis revealed that senescent DRG neurons develop a senescence phenotype characterized by activation of antigen-presenting cells via upregulation of Ctss as a hub gene. B cells were inferred as antigen-presenting cells activated by Ctss, and CD8-positive T cells were inferred as cells that receive antigen presentation from B cells.
Collapse
Affiliation(s)
- Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.
| |
Collapse
|
2
|
Deng S, Xie H, Xie B. Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Res Ther 2025; 16:167. [PMID: 40189500 PMCID: PMC11974143 DOI: 10.1186/s13287-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Neurodegenerative diseases including Alzheimer's and Parkinson's disease are age-related disorders which severely impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have highlighted "R3" strategies-rejuvenation, regeneration, and replacement-as promising therapeutic approaches for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address these debilitating conditions.
Collapse
Affiliation(s)
- Sixiu Deng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Gastroenterology, The Shapingba Hospital, Chongqing University( People's Hospital of Shapingba District), Chongqing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Zhong Y, Jin C, Luo X, Huang J, Wu F, Chen H, Wang J, Tian M, Zhang H. PET molecular imaging-based prevention for brain aging. Eur J Nucl Med Mol Imaging 2025; 52:1611-1613. [PMID: 39789224 DOI: 10.1007/s00259-025-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, 310007, Hangzhou, China.
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, 310007, Hangzhou, China
| | - Xiaoyun Luo
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Jiani Huang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Fei Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Hetian Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, 310007, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, 310007, Hangzhou, China.
| |
Collapse
|
4
|
Shaker MR, Salloum-Asfar S, Taha RZ, Javed I, Wolvetang EJ. Klotho overexpression protects human cortical neurons from β-amyloid induced neuronal toxicity. Mol Brain 2025; 18:27. [PMID: 40156002 PMCID: PMC11954210 DOI: 10.1186/s13041-025-01199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Klotho, a well-known aging suppressor protein, has been implicated in neuroprotection and the regulation of neuronal senescence. While previous studies have demonstrated its anti-aging properties in human brain organoids, its potential to mitigate neurodegenerative processes triggered by β-amyloid remains underexplored. In this study, we utilised human induced pluripotent stem cells (iPSCs) engineered with a doxycycline-inducible system to overexpress KLOTHO and generated 2D cortical neuron cultures from these cells. These neurons were next exposed to pre-aggregated β-amyloid 1-42 oligomers to model the neurotoxicity associated with Alzheimer's disease. Our data reveal that upregulation of KLOTHO significantly reduced β-amyloid-induced neuronal degeneration and apoptosis, as evidenced by decreased cleaved caspase-3 expression and preservation of axonal integrity. Additionally, KLOTHO overexpression prevented the loss of dendritic branching and mitigated reductions in axonal diameter, hallmark features of neurodegenerative pathology. These results highlight Klotho's protective role against β-amyloid-induced neurotoxicity in human cortical neurons and suggest that its age-related decline may contribute to neurodegenerative diseases such as Alzheimer's disease. Our findings underscore the therapeutic potential of Klotho-based interventions in mitigating age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Rowaida Z Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
- School of Pharmacy and Medical Sciences, UniSA Clinical and Health Sciences, The University of South Australia, Adelaide, SA, 5000, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
5
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
6
|
Niu Q, Li D, Zhang J, Piao Z, Xu B, Xi Y, Mohamed Kamal NNSN, Lim V, Li P, Yin Y. The new perspective of Alzheimer's Disease Research: Mechanism and therapeutic strategy of neuronal senescence. Ageing Res Rev 2024; 102:102593. [PMID: 39566741 DOI: 10.1016/j.arr.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD), commonly known as senile dementia, is a neurodegenerative disease with insidious onset and gradually worsening course. The brain is particularly sensitive to senescence, and neuronal senescence is an important risk factor for the occurrence of AD. However, the exact pathogenesis between neuronal senescence and AD has not been fully elucidated so far. Neuronal senescence is characterized by the permanent stagnation of the cell cycle, and the changes in its structure, function, and microenvironment are closely related to the pathogenesis and progression of AD. In recent years, studies such as the Aβ cascade hypothesis and Tau protein phosphorylation have provided new strategies for the therapy of AD, but due to the complexity of the etiology of AD, there are still no effective treatment measures. This article aims to deeply analyze the pathogenesis between AD and neuronal senescence, and sort out various existing therapeutic methods, to provide new ideas and references for the clinical treatment of AD.
Collapse
Affiliation(s)
- Qianqian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Danjie Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Jiayin Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Zhengji Piao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Bo Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Yuting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia; Dementia Multidisciplinary Research Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Vuanghao Lim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China.
| | - Yaling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
7
|
Yao M, Wei Z, Nielsen JS, Ouyang Y, Kakazu A, Wang H, Du L, Li R, Chu T, Scafidi S, Lu H, Aggarwal M, Duan W. Senolytic therapy preserves blood-brain barrier integrity and promotes microglia homeostasis in a tauopathy model. Neurobiol Dis 2024; 202:106711. [PMID: 39437971 PMCID: PMC11600427 DOI: 10.1016/j.nbd.2024.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Cellular senescence, characterized by expressing the cell cycle inhibitory proteins, is evident in driving age-related diseases. Senescent cells play a crucial role in the initiation and progression of tau-mediated pathology, suggesting that targeting cell senescence offers a therapeutic potential for treating tauopathy associated diseases. This study focuses on identifying non-invasive biomarkers and validating their responses to a well-characterized senolytic therapy combining dasatinib and quercetin (D + Q), in a widely used tauopathy mouse model, PS19. We employed human-translatable MRI measures, including water extraction with phase-contrast arterial spin tagging (WEPCAST) MRI, T2 relaxation under spin tagging (TRUST), longitudinally assessed brain physiology and high-resolution structural MRI evaluated the brain regional volumes in PS19 mice. Our data reveal increased BBB permeability, decreased oxygen extraction fraction, and brain atrophy in 9-month-old PS19 mice compared to their littermate controls. (D + Q) treatment effectively preserves BBB integrity, rescues cerebral oxygen hypometabolism, attenuates brain atrophy, and alleviates tau hyperphosphorylation in PS19 mice. Mechanistically, D + Q treatment induces a shift of microglia from a disease-associated to a homeostatic state, reducing a senescence-like microglial phenotype marked by increased p16/Ink4a. D + Q-treated PS19 mice exhibit enhanced cue-associated cognitive performance in the tracing fear conditioning test compared to the vehicle-treated littermates, implying improved cognitive function by D + Q treatment. Our results pave the way for application of senolytic treatment as well as these noninvasive MRI biomarkers in clinical trials in tauopathy associated neurological disorders.
Collapse
Affiliation(s)
- Minmin Yao
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Scharff Nielsen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Ouyang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Aaron Kakazu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Haitong Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Lida Du
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Ruoxuan Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Tiffany Chu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manisha Aggarwal
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Yao M, Wei Z, Nielsen JOS, Kakazu A, Ouyang Y, Li R, Chu T, Scafidi S, Lu H, Aggarwal M, Duan W. Senolytic therapy preserves blood-brain barrier integrity and promotes microglia homeostasis in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586662. [PMID: 38585805 PMCID: PMC10996647 DOI: 10.1101/2024.03.25.586662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cellular senescence, characterized by expressing the cell cycle inhibitory proteins, is evident in driving age-related diseases. Senescent cells play a crucial role in the initiation and progression of tau-mediated pathology, suggesting that targeting cell senescence offers a therapeutic potential for treating tauopathy associated diseases. This study focuses on identifying non-invasive biomarkers and validating their responses to a well-characterized senolytic therapy combining dasatinib and quercetin (D+Q), in a widely used tauopathy mouse model, PS19. We employed human-translatable MRI measures, including water extraction with phase-contrast arterial spin tagging (WEPCAST) MRI, T2 relaxation under spin tagging (TRUST), longitudinally assessed brain physiology and high-resolution structural MRI evaluated the brain regional volumes in PS19 mice. Our data reveal increased BBB permeability, decreased oxygen extraction fraction, and brain atrophy in 9-month-old PS19 mice compared to their littermate controls. (D+Q) treatment effectively preserves BBB integrity, rescues cerebral oxygen hypometabolism, attenuates brain atrophy, and alleviates tau hyperphosphorylation in PS19 mice. Mechanistically, D+Q treatment induces a shift of microglia from a disease-associated to a homeostatic state, reducing a senescence-like microglial phenotype marked by increased p16/INK4a. D+Q-treated PS19 mice exhibit enhanced cue-associated cognitive performance in the tracing fear conditioning test compared to the vehicle-treated littermates, implying improved cognitive function by D+Q treatment. Our results pave the way for application of senolytic treatment as well as these noninvasive MRI biomarkers in clinical trials in tauopathy associated neurological disorders.
Collapse
|