1
|
Li C, Zhang Y, Shi W, Peng Y, Han Y, Jiang S, Dong X, Zhang R. Viral diversity within marine biofilms and interactions with corrosive microbes. ENVIRONMENTAL RESEARCH 2024; 263:119991. [PMID: 39276831 DOI: 10.1016/j.envres.2024.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In marine environments, a wide variety of microbes like bacteria, and archaea influence on the corrosion of materials. Viruses are widely distributed in biofilms among these microbes and may affect the corrosion process through interactions with key corrosive prokaryotes. However, understanding of the viral communities within biofilms and their interactions with corrosive microbes remains is limited. To improve this knowledge gap, 53 metagenomes were utilized to investigate the diversity of viruses within biofilms on 8 different materials and their interactions with corrosive microbes. Notably, the viruses within biofilms predominantly belonged to Caudoviricetes, and phylogenetic analysis of Caudoviricetes and protein-sharing networks with other environments revealed the presence of numerous novel viral clades in biofilms. The virus‒host linkages revealed a close association between viruses and corrosive microbes in biofilms. This means that viruses may modulate host corrosion-related metabolism through auxiliary metabolic genes. It was observed that the virus could enhance host resistance to metals and antibiotics via horizontal gene transfer. Interestingly, viruses could protect themselves from host antiviral systems through anti-defense systems. This study illustrates the diversity of viruses within biofilms formed on materials and the intricate interactions between viruses and corrosive microbes, showing the potential roles of viruses in corrosive biofilms.
Collapse
Affiliation(s)
- Chengpeng Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenqing Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shuqing Jiang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
2
|
Zhou Y, Wang Y, Prangishvili D, Krupovic M. Exploring the Archaeal Virosphere by Metagenomics. Methods Mol Biol 2024; 2732:1-22. [PMID: 38060114 DOI: 10.1007/978-1-0716-3515-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems. Viral metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery and offers insight into the diversity, distribution, and environmental impact of uncultured archaeal viruses. Presently, metagenomics approaches have been successfully applied to explore the viromes associated with various lineages of extremophilic and mesophilic archaea, including Asgard archaea (Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea (Altiarchaeota), and marine group II archaea (Poseidoniales). Here, we provide an overview of methods widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse environments.
Collapse
Affiliation(s)
- Yifan Zhou
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - David Prangishvili
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France.
| |
Collapse
|