1
|
Wang C, Feng Y, Patel D, Xie H, Lv Y, Zhao H. The role of CD47 in non-neoplastic diseases. Heliyon 2023; 9:e22905. [PMID: 38125492 PMCID: PMC10731077 DOI: 10.1016/j.heliyon.2023.e22905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
CD47 is a 50 kDa five-spanning membrane receptor that plays a crucial role in multiple cellular processes, including myeloid cell activation, neutrophils transmigration, vascular remodeling, leukocyte adhesion and trans-endothelial migration. Recent studies have revealed that CD47 is a highly expressed anti-phagocytic signal in several types of cancer, and therefore, blocking of CD47 has shown an effective therapeutic potential in cancer immunotherapy. In addition, CD47 has been found to be involved in a complex interplay with microglia and other types of cells, and increasing evidence indicates that CD47 can be targeted as part of immune modulatory strategies for non-neoplastic diseases as well. In this review, we focus on CD47 and its role in non-neoplastic diseases, including neurological disorders, atherosclerosis and autoimmune diseases. In addition, we discuss the major challenges and potential remedies associated with CD47-SIRPα-based immunotherapies.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Deepali Patel
- School of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Hongwei Xie
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Yaqing Lv
- Department of Outpatient, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
2
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Interplay between efferocytosis and atherosclerosis. Arch Cardiovasc Dis 2023; 116:474-484. [PMID: 37659915 DOI: 10.1016/j.acvd.2023.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
In an adult human, billions of cells die and turn over daily. During this process, many apoptotic cells are produced and subsequently cleared by phagocytes - a process termed efferocytosis, which plays a critical role in tissue homeostasis. Efferocytosis is an important mechanism in the control of inflammatory processes. Efficient efferocytosis inhibits accumulation of apoptotic cells/debris and maintains homeostasis before the onset of necrosis (secondary necrosis), which promotes inflammation or injury. During efferocytosis, mitochondrial fission and the oxidative stress process are linked through reactive oxygen species production and oxidative stress control. Autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis by activated inflammatory cells, particularly neutrophils and macrophages. Autophagy in neutrophils is activated by phagocytosis of pathogens or activation of pattern recognition receptors. Autophagy is essential for major neutrophil functions, including degranulation, reactive oxygen species production, oxidative stress and release of neutrophil extracellular cytokines. Failed efferocytosis is a key mechanism driving the development and progression of chronic inflammatory diseases, including atherosclerosis, cardiometabolic pathology, neurodegenerative disease and cancer. Impairment of efferocytosis in apoptotic macrophages is a determinant of atherosclerosis severity and the vulnerability of plaques to rupture. Recent results suggest that inhibition of efferocytosis in the protection of the myocardium results in reduced infiltration of reparatory macrophages into the tissue, in association with oxidative stress reduction. Activated macrophages play a central role in the development and resolution of inflammation. The resolution of inflammation through efferocytosis is an endogenous process that protects host tissues from prolonged or excessive inflammation. Accordingly, therapeutic strategies that ameliorate efferocytosis control would be predicted to dampen inflammation and improve resolution. Thus, therapies targeting efferocytosis will provide a new means of treating and preventing cardiovascular and metabolic diseases involving the chronic inflammatory state.
Collapse
Affiliation(s)
- Luc Rochette
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France.
| | - Geoffrey Dogon
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Eve Rigal
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Marianne Zeller
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Yves Cottin
- Service de cardiologie, CHU de Dijon, 21000 Dijon, France
| | - Catherine Vergely
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| |
Collapse
|
3
|
Ma Q, Wu S, Yang L, Wei Y, He C, Wang W, Zhao Y, Wang Z, Yang S, Shi D, Liu Y, Zhou Z, Sun J, Zhou Y. Hyaluronic Acid-Guided Cerasome Nano-Agents for Simultaneous Imaging and Treatment of Advanced Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202416. [PMID: 36529695 PMCID: PMC9929131 DOI: 10.1002/advs.202202416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/23/2022] [Indexed: 05/25/2023]
Abstract
Early noninvasive screening and regression therapy for vulnerable atherosclerotic plaques remain challenging. In this study, it is aimed to develop a new approach for the active targeting of atherosclerotic plaques with nano-agents to aid imaging and treatment. Biocompatible hyaluronic acid (HA)-guided cerasomes are generated to selectively target CD44-positive cells within the plaque in in vitro studies and in vivo testing in Apoe-/- mice. Rosuvastatin (RST) is encapsulated in the HA-guided cerasome nano-formulation to produce HA-CC-RST, which results in significant plaque regression as compared to treatment with the free drug. Moreover, gadodiamide-loaded HA-CC enhances magnetic resonance images of vulnerable plaques, thereby attaining the goal of improved simultaneous treatment and imaging. Transcriptomic analysis confirms plaque regression with HA-CC-RST treatment, which potentially benefits from the anti-inflammatory effect of RST. In summary, a safe and efficient nano-formulation for the targeted delivery of active agents to atherosclerotic plaques is developed and may be applicable to other diagnostic and therapeutic agents for atherosclerosis treatment.
Collapse
Affiliation(s)
- Qian Ma
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Sijing Wu
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
| | - Ling Yang
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Yaohua Wei
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Chaoyong He
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Wenshan Wang
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Yingxin Zhao
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Zhijian Wang
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Shiwei Yang
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Dongmei Shi
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Yuyang Liu
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Zhiming Zhou
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Jiefang Sun
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Yujie Zhou
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| |
Collapse
|
4
|
Tajbakhsh A, Gheibihayat SM, Askari H, Savardashtaki A, Pirro M, Johnston TP, Sahebkar A. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238:108282. [DOI: 10.1016/j.pharmthera.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|