Rasooly D, Pereira AC, Joseph J. Drug Discovery and Development for Heart Failure Using Multi-Omics Approaches.
Int J Mol Sci 2025;
26:2703. [PMID:
40141349 PMCID:
PMC11943351 DOI:
10.3390/ijms26062703]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Heart failure (HF) is a complex, heterogeneous syndrome with rising prevalence and high morbidity and mortality. The pathophysiology and diverse etiologies of HF present significant challenges for developing effective therapies. Omics technologies-including genomics, proteomics, transcriptomics, metabolomics, and epigenomics-have reshaped our understanding of HF at the molecular level, uncovering new biomarkers and potential therapeutic targets. Omics also enable insights into individualized treatment responses, the risks of adverse drug effects, and patient stratification for clinical trials. This review explores how multi-omics can enhance heart failure drug discovery and development across all stages of the therapeutic pipeline: (1) target selection and lead identification, (2) preclinical studies, and (3) clinical trials. By integrating omics approaches throughout the drug development process, we can accelerate the discovery of more effective and personalized therapies for heart failure.
Collapse