1
|
Gorgey AS, Venigalla S, Deitrich JN, Ballance WB, Carter W, Lavis T, Adler RA. Electrical stimulation paradigms on muscle quality and bone mineral density after spinal cord injury. Osteoporos Int 2025; 36:1039-1051. [PMID: 40261334 PMCID: PMC12122546 DOI: 10.1007/s00198-025-07482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
The goal of the work was to determine the effects of altering muscle quality (peak torque and muscle CSA) via NMES-RT on bone mineral density (BMD) following application of FES-lower extremity cycling. Components of muscle quality were altered and attenuated the decline in BMD after SCI. INTRODUCTION Spinal cord injury (SCI) negatively impacts muscle quality and bone health. Neuromuscular electrical stimulation-resistance training (NMES-RT) has been shown to enhance muscle quality. It is unclear whether adding NMES-RT to functional electrical stimulation (FES)-lower extremity cycling may further augment muscle quality and subsequently enhance bone mineral density (BMD). METHODS Thirty-two participants were randomized into either 12 weeks of NMES-RT followed by 12 weeks of FES- lower extremity cycling (NMES-RT + FES; n = 16) or 12 weeks of passive movement training (PMT) followed by 12 weeks of FES-lower extremity cycling (PMT + FES; n = 16). Measurements were conducted at baseline (BL), post-interventions 1 and 2 (P1 and P2) separated evenly by 12 weeks. Left thigh muscle isometric and isokinetic torques were measured using an isokinetic dynamometer. Magnetic resonance imaging measured whole thigh and knee extensor (KE) muscle CSAs. Dual energy X-ray absorptiometry measured total and regional BMD. RESULTS NMES-RT elicited a trend towards greater isometric torque at 80 Hz (P = 0.057) and isokinetic torque (60 deg/s; P = 0.009 and 180 deg/s; P = 0.003) compared to PMT. Muscle CSA was greater in left whole thigh (F (2,20) = 9.1; P = 0.007) and KE (F (2,20) = 15.5; P = 0.001) by 11.0 and 8.0 cm2 respectively at P1 in the NMES-RT + FES compared to PMT + FES. In the NMES-RT + FES, ankle weights were positively associated with muscle CSA, isometric and isokinetic torques as well as muscle quality following P1. Compared to PMT + FES, NMES-RT + FES maintained BMD at the distal femur. CONCLUSION NMES-RT + FES enhanced muscle quality as measured by torque production and muscle CSA as result of increasing ankle weights. The addition of FES- lower extremity cycling to NMES-RT maintained but did not further augment muscle quality. Furthermore, NMES-RT + FES may help maintain BMD after SCI. CLINICAL TRIAL REGISTRATION Registered with clinicaltrials.gov: NCT02660073.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA.
- Physical Medicine and Rehabilitation, School of Medicine, Richmond, VA, USA.
| | - Siddharth Venigalla
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
| | - Jakob N Deitrich
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
| | - William B Ballance
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
| | - William Carter
- Physical Medicine and Rehabilitation, School of Medicine, Richmond, VA, USA
- VCU-Sheltering Arms Institute, Richmond, VA, USA
| | - Timothy Lavis
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
- Physical Medicine and Rehabilitation, School of Medicine, Richmond, VA, USA
| | - Robert A Adler
- Endocrinology Service, Central Virginia VA Healthcare System, Richmond, VA, USA
- Endocrine Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Cirnigliaro CM, Kuo W, Forrest GF, Spungen AM, Parrott JS, Cardozo CP, Pal S, Bauman WA. Exoskeletal-assisted walking combined with transcutaneous spinal cord stimulation to improve bone health in persons with spinal cord injury: study protocol for a prospective randomised controlled trial. BMJ Open 2024; 14:e086062. [PMID: 39289024 PMCID: PMC11409316 DOI: 10.1136/bmjopen-2024-086062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Persons with non-ambulatory spinal cord injury (SCI) undergo immediate unloading of the skeleton and, as a result, have marked loss of bone mineral density below the level of lesion that is directly associated with increased risk of long-bone fractures. There is a paucity of research that has successfully implemented rehabilitation and/or exercise training interventions to mitigate bone loss after acute SCI or reverse bone loss that has already occurred in chronic SCI. This paper describes a research protocol to compare the effect of exoskeletal-assisted walking (EAW) alone versus EAW plus transcutaneous spinal cord stimulation (EAW+tSCS) on bone density, geometry and strength in a cohort of chronic SCI participants. METHODS AND ANALYSIS After meeting eligibility criteria and completing baseline testing, sixteen participants will be block randomised into the EAW alone group or the EAW+tSCS combined group (n=8 each group). Each group will receive a total of 108 overground training sessions (60 min sessions, 3 times a week, for 36 weeks) for the 9-month training period. Imaging for bone density and geometry by dual-energy X-ray absorptiometry and peripheral quantitative CT will be performed prior to starting the intervention (baseline), after 72 training sessions, and again after 108 sessions in each of the intervention arms. CT imaging of both lower extremities will be performed at baseline and at the 9-month time point in each of the intervention arms. Finite element models of bone loading will be generated based on three-dimensional (3D) reconstruction of bone architecture from CT imaging prior to and 9 months after the intervention. ETHICS AND DISSEMINATION This study is currently approved by the Kessler Foundation and James J. Peters VA Medical Center Institutional Review Board. A member of the research team will review and explain the study consent form and will have all eligible participants sign prior to participation in the study. Results from this study will be disseminated to clinicians and researchers in the SCI community at national and international conferences. TRIAL REGISTRATION NUMBER NCT03096197.
Collapse
Affiliation(s)
- Christopher M Cirnigliaro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Brunswick, NJ, USA
| | - William Kuo
- Department of Biomedical Engineering, New Jersey Institute for Technology, Newark, NJ, USA
| | - Gail F Forrest
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Brunswick, NJ, USA
- Center for Spinal Stimulation and Center for Mobility and Rehabilitation Engineering, Kessler Foundation, West Orange, NJ, USA
| | - Ann M Spungen
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Scott Parrott
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saikat Pal
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - William A Bauman
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Echevarria-Cruz E, McMillan DW, Reid KF, Valderrábano RJ. Spinal Cord Injury Associated Disease of the Skeleton, an Unresolved Problem with Need for Multimodal Interventions. Adv Biol (Weinh) 2024:e2400213. [PMID: 39074256 DOI: 10.1002/adbi.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Spinal cord injury is associated with skeletal unloading, sedentary behavior, decreases in skeletal muscle mass, and exercise intolerance, which results in rapid and severe bone loss. To date, monotherapy with physical interventions such as weight-bearing in standing frames, computer-controlled electrically stimulated cycling and ambulation exercise, and low-intensity vibration are unsuccessful in maintaining bone density after SCI. Strategies to maintain bone density with commonly used osteoporosis medications also fail to provide a significant clinical benefit, potentially due to a unique pathology of bone deterioration in SCI. In this review, the available data is discussed on evaluating and monitoring bone loss, fracture, and physical and pharmacological therapeutic approaches to SCI-associated disease of the skeleton. The treatment of SCI-associated disease of the skeleton, the implications for clinical management, and areas of need are considered for future investigation.
Collapse
Affiliation(s)
- Evelyn Echevarria-Cruz
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami Leonard M. Miller School of Medicine, 1611 NW 12th ave, Office 2.141, Miami, FL, 33136, USA
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kieran F Reid
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
- Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Crack LE, Simonian N, Schnitzer TJ, Edwards WB. Monthly treatment with romosozumab for 1 year increases bone mineral at the hip, but not the knee, in women with chronic spinal cord injury. JBMR Plus 2024; 8:ziae077. [PMID: 38911320 PMCID: PMC11193877 DOI: 10.1093/jbmrpl/ziae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Bone loss below the level of neurological lesion is a well-known complication of spinal cord injury (SCI). To date, most research has focused on pharmaceutical intervention using antiresorptives to prevent bone loss during the acute phase of SCI; however, limited research has investigated treatments for established osteoporosis during chronic SCI. Romosozumab, a monoclonal antibody with both antiresorptive and anabolic effects, has demonstrated significant increases in BMD for women with established PMO. Therefore, the purpose of this study was to examine the efficacy of monthly treatment with romosozumab to improve DXA-derived areal BMD at the hip, and CT-derived BMC and strength at the hip and knee in women with chronic SCI and an inability to ambulate. Twelve female participants with chronic SCI were recruited to receive 1 yr of monthly subcutaneous injections of romosozumab (210 mg). DXA and CT scans were taken at baseline, and months 3, 6, and 12 to quantify bone mineral, and finite element (FE) analysis was used to predict bone strength. Longitudinal mixed effects models were employed to determine the impact of treatment on bone properties. After 12 mo of treatment, areal BMD at the lumbar spine and total hip were significantly increased with median changes of 10.2% (IQR: 8.3-15.2%, p<.001) and 4.2% (IQR: 3.4-7.7%, p = .009), respectively. Improvements at the hip were primarily due to increases in trabecular, not cortical, bone and effects were sufficient to significantly increase FE-predicted strength by 20.3% (IQR: 9.5-37.0%, p = .004). Treatment with romosozumab did not lead to any significant improvement in bone mineral at the distal femur or proximal tibia. These findings provide promising results for romosozumab treatment to improve bone mineral and reduce fracture risk at the hip, but not the knee, in women with chronic SCI.
Collapse
Affiliation(s)
- Laura E Crack
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - W Brent Edwards
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Valderrábano RJ, Pencina K, Shang YV, Echevarria E, Dixon R, Ghattas C, Wilson L, Reid KF, Storer T, Garrahan M, Tedtsen T, Zafonte R, Bouxsein M, Bhasin S. Bone microarchitectural alterations associated with spinal cord injury: Relation to sex hormones, metabolic factors, and loading. Bone 2024; 181:117039. [PMID: 38325649 DOI: 10.1016/j.bone.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
CONTEXT People living with spinal cord injury (SCI) are at high risk for bone fractures. Neural, hormonal and metabolic contributors to bone microarchitectural alterations are incompletely understood. OBJECTIVE To determine the relationship of physical, metabolic and endocrine characteristics with bone microarchitecture, characterized using high-resolution peripheral quantitative computed tomography (HRpQCT) in SCI. DESIGN Cross-sectional analyses of bone properties in people with SCI. PARTICIPANTS Twenty adults with SCI and paraplegia (12) or motor incomplete quadriplegia (8). OUTCOME MEASURES Distal tibia and radius HRpQCT parameters, including density, microstructure and strength by microfinite element anaysis (μFEA); sex hormones; metabolic and inflammatory markers. RESULTS The mean age of the participants with SCI was 41.5 ± 10.3 years, BMI 25.7 ± 6.2 kg/m2, time since injury 10.4 ± 9.0 years. Participants with SCI had significantly lower median total (Z score - 3.3), trabecular (-2.93), and cortical vBMD (-1.87), and Failure Load by μFEA (-2.48) at the tibia than controls. However, radius vBMD, aBMD and microarchitecture were similar in participants with SCI and un-injured controls. Unexpectedly, C-Reactive Protein (CRP) was positively associated with tibial trabecular vBMD (β = 0.77, p = 0.02), thickness (β = 0.52, p = 0.04) and number (β = 0.92, p = 0.02). At the radius, estradiol level was positively associated with total vBMD (β = 0.59, p = 0.01), trabecular thickness (β = 0.43, p = 0.04), cortical thickness (β = 0.63, p = 0.01) and cortical porosity (β = 0.74 p = 0.04). CONCLUSIONS Radius vBMD and microarchitecture is preserved but tibial total, cortical and trabecular vBMD, and estimated bone strength are markedly lower and bone microarchitectural parameters substantially degraded in people with SCI. The alterations in bone microarchitecture in people with SCI are likely multifactorial, however marked degradation of bone microarchitecture in tibia but not radius suggests that unloading is an important contributor of site-specific alterations of bone microarchitecture after SCI. Fracture prevention in SCI should focus on strategies to safely increase bone loading. CLINICALTRIALS gov registration #: (NCT03576001).
Collapse
Affiliation(s)
- Rodrigo J Valderrábano
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Karol Pencina
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yili-Valentine Shang
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Evelyn Echevarria
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Robert Dixon
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Catherine Ghattas
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Lauren Wilson
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kieran F Reid
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Thomas Storer
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Margaret Garrahan
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Trinity Tedtsen
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mary Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Shalender Bhasin
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
6
|
Cavedon V, Sandri M, Peluso I, Zancanaro C, Milanese C. Sporting activity does not fully prevent bone demineralization at the impaired hip in athletes with amputation. Front Physiol 2022; 13:934622. [PMID: 36338502 PMCID: PMC9634735 DOI: 10.3389/fphys.2022.934622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
There is lack of information about bone mineralization at the lumbar spine and bilateral hips of athletes with unilateral lower limb amputation. The present study assessed for the first time the areal bone mineral density at the lumbar spine and at the hip of the able and impaired leg by means of Dual-Energy X-Ray Absorptiometry using a large sample (N = 40) of male athletes. Results showed that bone demineralization in athletes with unilateral lower limb amputation is found at the impaired hip but not at the lumbar spine and may therefore be site-specific. The extent of hip demineralization was influenced by the level of amputation, with about 80% of athletes with above knee amputation and 10% of athletes with below knee amputation showing areal bone mineral density below the expected range for age. Nevertheless, a reduced percentage of fat mass and a lower fat-to-lean mass ratio in the residual impaired leg as well as a greater amount of weekly training was positively associated with bone mineralization at the impaired hip (partial correlation coefficients = 0.377–0.525, p = 0.040–0.003). Results showed that participation in adapted sport has a positive effect on bone health in athletes with unilateral lower limb amputation but is not sufficient to maintain adequate levels of bone mineralization at the impaired hip in athletes with above-knee amputation. Accordingly, physical conditioners should consider implementing sporting programs, according to the severity of the impairment, aimed at improving bone mineralization at the impaired hip and improve body composition in the residual impaired leg.
Collapse
Affiliation(s)
- Valentina Cavedon
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- *Correspondence: Valentina Cavedon,
| | - Marco Sandri
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Peluso
- Council for Agricultural Research and Economics (CREA-AN), Research Centre for Food and Nutrition, Rome, Italy
| | - Carlo Zancanaro
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Jr Al C, Dr P, Ac C, Aps C. Cross-Sectional Study of Knee Bone Mineral Density and Fragility Fractures in Patients with Neurological Injuries and Neuromuscular Disorders. J Clin Densitom 2022; 25:682-691. [PMID: 36175247 DOI: 10.1016/j.jocd.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Patients with neurological injury and neuromuscular disorders are at increased risk for osteoporosis and fragility fracture. This cross-sectional study investigated whether knee bone mineral density (BMD) correlates with fragility fracture in patients with neurological injury and neuromuscular injuries. METHODOLOGY In this retrospective chart review, 435 participants underwent dual-energy X-ray absorptiometry (DXA) for BMD analysis. Distal femur and proximal tibial BMD measurements were performed as per the Toronto protocol. Spine, hip, and forearm DXA was performed following the standards of the International Society of Clinical Densitometry, 2019. Blinded and independent clinical evaluations and laboratory exams were performed. Participants were divided into groups with and without fracture confirmed by clinical history and radiography. RESULTS Distal femur and proximal tibial BMD were measured in 288/435 (66.2%) participants. Osteoporosis was noted in 138/288 (47.9%) patients. Fractures occurred in 95/435 participants (21.8%), including one fracture in 64/435 participants (14.7%), two fractures in 24/435 participants (5.5%), and greater than two fractures in 7/435 patients (1.6%). Fractures were noted in 23/54 (42.6%) participants with post-polio syndrome, 21/66 with brain injury (31.8%), 3/10 (30%) with brain injury and spinal cord injury, 24/98 (24.5%) with neuromuscular disorders, 9/52 (17.3%) with nontraumatic spinal cord injury, and 15/155 (9.7%) with traumatic spinal cord injury. The median BMD of the knee and hip was lower in participants with fractures. Distal femur and proximal tibial BMD (odds ratio [OR] = 0.02, 95% confidence interval [CI]: 0.01-0.45) remained independently associated with fragility fracture in multivariable analysis. CONCLUSION Proximal tibial and distal femur BMD measurements offered additional information on neurological injury and neuromuscular disorders.
Collapse
Affiliation(s)
- Cunha Jr Al
- Department of Radiology and Diagnostic Imaging, Rede SARAH de Hospitais de Reabilitação, Av. Amazonas, 5953. Gameleira, 30510-000, Belo Horizonte, MG, Brazil.
| | - Precioso Dr
- Department of Internal Medicine, Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, MG, Brazil
| | - Cotta Ac
- Department of Pathology, Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, MG, Brazil
| | - Champs Aps
- Department of Spinal Injury Rehabilitation, Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Cirnigliaro CM, Myslinski MJ, Parrott JS, Cross GT, Gilhooley S, La Fountaine MF, Kirshblum SC, McClure IA, Forrest GF, Spungen AM, Bauman WA. Generation of a Reference Dataset to Permit the Calculation of T-scores at the Distal Femur and Proximal Tibia in Persons with Spinal Cord Injury. J Clin Densitom 2022; 25:308-318. [PMID: 35216904 DOI: 10.1016/j.jocd.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Persons with traumatic spinal cord injury (SCI) have severe bone loss below the level of lesion with the distal femur (DF) and proximal tibia (PT) being the skeletal regions having the highest risk of fracture. While a reference areal bone mineral density (aBMD) database is available at the total hip (TH) using the combined National Health and Nutrition Examination Survey (NHANES) III study and General Electric (GE) combined (GE/NHANES) to calculate T-score (T-scoreGE/NHANES), no such reference database exists for aBMD of the DF, and PT. The primary objectives of this study were (1) to create a reference dataset of young-healthy able-bodied (YHAB) persons to calculate T-score (T-scoreYHAB) values at the DF and PT, (2) to explore the impact of time since injury (TSI) on relative bone loss in the DF and PT regions using the two computation models to determine T-score values, and (3) to determine agreement between T-score values for a cohort of persons with SCI using the (T-scoreYHAB) and (T-scoreGE/NHANES) reference datasets. A cross-sectional prospective data collection study. A Department of Veterans Affairs Medical Center and a Private Rehabilitation Hospital. A normative reference aBMD database at the DF and PT was collected in 32 male and 32 female Caucasian YHAB participants (n=64) and then applied to calculate T-score values at the DF and PT in 105 SCI participants from a historical cohort. The SCI participants were then grouped based on TSI epochs (E-I: TSI < 1y, E-II: TSI 1-5y, E-III: TSI 6-10y, E-IV: TSI 11-20y, E-V: TSI > 20y). N/A. The knee and hip aBMD values were obtained by dual energy X-ray absorptiometry (GE Lunar iDXA) using standard clinical software for proximal femur orthopedic knee software applications. There were no significant differences in mean aBMD values across the four YHAB age subgroups (21-25, 26-30, 31-35, and 36-40 yr of age) at the TH, DF, and PT; mean aBMD values were higher in men compared to the women at all skeletal regions of interest. Using the mean YHAB aBMD values to calculate T-score values at each TSI epoch for persons with SCI, T-score values decreased as a function of TSI, and they continued to decline for 11-20 yr. Moderate kappa agreement was noted between the YHAB and the GE/NHANES reference datasets for the T-score cutoff criteria accepted to diagnose osteoporosis (i.e., SD <-2.5). A homogeneous reference dataset of YHAB aBMD values at the DF and PT was applied to calculate T-score values in persons with chronic SCI. There was a moderate level of agreement at the TH between the YHAB and GE/NHANES reference datasets when applying the conventional T-score cutoff value for the diagnosis of osteoporosis.
Collapse
Affiliation(s)
- Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| | - Mary Jane Myslinski
- Department of Physical Therapy, School of Biomedical and Health Sciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - J Scott Parrott
- Department of Physical Therapy, School of Biomedical and Health Sciences, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Gregory T Cross
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Shawn Gilhooley
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
| | - Steven C Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ, USA; Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Isa A McClure
- Kessler Institute for Rehabilitation, West Orange, NJ, USA
| | - Gail F Forrest
- Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ann M Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Ghatas MP, Sutor TW, Gorgey AS. Prediction of Distal Femur and Proximal Tibia Bone Mineral Density From Total Body Dual Energy X-Ray Absorptiometry Scans in Persons with Spinal Cord Injury. J Clin Densitom 2022; 25:252-260. [PMID: 34920939 DOI: 10.1016/j.jocd.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
Bone density decreases rapidly after spinal cord injury (SCI), increasing fracture risk. The most common fracture sites are at the knee (i.e., distal femur or proximal tibia). Despite this high fracture incidence, knee-specific scans for bone density using dual x-ray absorptiometry (DXA) were not available until 2014 and are still not routinely used in clinical practice today. This has made it difficult to determine the rehabilitation efficacy and hindered understanding of the long-term changes in knee areal bone density. The purpose of this investigation was to compare areal bone mineral density values for the knee from both total-body and knee-specific DXA scans in persons with SCI. A total of 20 participants (16 males) >1 yr-post spinal cord injury received two DXA scans; a total-body scan and a knee-specific scan. Standardized methods were used to create regions of interest to determine bone density of four regions - the epiphysis and metaphysis of the distal femur and proximal tibia - from the total-body scan. Linear regressions and Bland-Altman analyses were conducted to determine the correlation (r2) and agreement (mean bias ± 95% level of agreement) respectively between the two scan types for each region. Linear regression analyses showed strong significant (p < 0.001) relationships between the two scan types for the distal femur epiphysis (r2 = 0.88) and metaphysis (r2 = 0.98) and the proximal tibia epiphysis (r2 = 0.88) and metaphysis (r2 = 0.99). The mean bias ± 95% level of agreement were distal femur epiphysis (0.05 ± 0.1 g/cm2) and metaphysis (0.02 ± 0.04 g/cm2); proximal tibia epiphysis (-0.02 ± 0.1 g/cm2) and metaphysis (0.02 ± 0.03 g/cm2). Results suggest knee-specific bone density can be assessed using a total-body DXA scan. This may allow for more comprehensive use of DXA scans which would reduce the burden of multiple site-specific scans for persons with SCI and enable more widespread adoption of knee bone density assessment in this population.
Collapse
Affiliation(s)
- Mina P Ghatas
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Tommy W Sutor
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA; Physical Medicine and Rehabilitation Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
10
|
Increased Fat Oxidation During Arm Cycling Exercise in Adult Men With Spinal Cord Injury Compared With Noninjured Controls. Int J Sport Nutr Exerc Metab 2021; 32:30-40. [PMID: 34591786 DOI: 10.1123/ijsnem.2021-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
People with spinal cord injury (SCI) tend to be more sedentary and increase fat accumulation, which could have a negative influence on metabolic flexibility. The aim of this study was to investigate the capacity to oxidize fat in a homogenous sample of men with thoracic SCI compared with healthy noninjured men during an arm cycling incremental test. Forty-one men, 21 with SCI and 20 noninjured controls, performed an incremental arm cycling test to determine peak fat oxidation (PFO) and the intensity of exercise that elicits PFO (Fatmax). PFO was expressed in absolute values (g/min) and relative to whole-body and upper-body lean mass ([mg·min-1]·kg-1) through three different models (adjusting by cardiorespiratory fitness and fat mass). Gross mechanical efficiency was also calculated. PFO was higher in SCI than in noninjured men (0.27 ± 0.07 vs. 0.17 ± 0.07 g/min; 5.39 ± 1.30 vs. 3.29 ± 1.31 [mg·min-1]·kg-1 whole-body lean mass; 8.28 ± 2.11 vs. 5.08 ± 2.12 [mg·min-1]·kg-1 upper-body lean mass). Fatmax was found at a significantly higher percentage of VO2peak in men with SCI (33.6% ± 8.2% vs. 23.6% ± 6.4%). Differences persisted and even increased in the fully adjustment model and at any intensity. Men with SCI showed significantly higher gross mechanical efficiency at 35 and 65 W than the noninjured group. Men with SCI showed higher fat oxidation when compared with noninjured men at any intensity, even increased after full adjustment for lean mass, fat mass, and cardiorespiratory fitness. These findings suggest that SCI men could improve their metabolic flexibility and muscle mass for greater efficiency, not being affected by their fat accumulation.
Collapse
|
11
|
Fang Y, Morse LR, Nguyen N, Battaglino RA, Goldstein RF, Troy KL. Functional electrical stimulation (FES)-assisted rowing combined with zoledronic acid, but not alone, preserves distal femur strength and stiffness in people with chronic spinal cord injury. Osteoporos Int 2021; 32:549-558. [PMID: 32888047 DOI: 10.1007/s00198-020-05610-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023]
Abstract
UNLABELLED We investigated the effect of 12 months of functional electrical stimulation-assisted rowing with and without zoledronic acid (ZA) on computationally estimated bone strength and stiffness in individuals with spinal cord injury. We found that rowing with ZA, but not rowing alone, improved stiffness at the distal femur, but not the proximal tibia. INTRODUCTION People with spinal cord injury (SCI) have high fracture risk at the knee after the injury. Therapies that prevent bone loss or stimulate an anabolic response in bone have been proposed to reduce fractures. Zoledronic acid (ZA) is a potent bisphosphonate that inhibits osteoclastic resorption. Functional electrical stimulation (FES)-assisted rowing is a potentially osteogenic exercise involving mechanical stimulation to the lower extremities. Here, we investigated the effect of FES-assisted rowing with and without ZA on bone strength and stiffness in individuals with SCI. METHODS Twenty individuals from a cohort of adults with SCI who participated in a clinical trial were included in the study. CT scans of their knees before and after the intervention were converted to finite element models. Bone failure strength (Tult) and stiffness were calculated at the proximal tibia and distal femur. RESULTS Tult at the distal femur increased 4.6% among people who received rowing + ZA and decreased 13.9% among those with rowing only (p < 0.05 for group). Torsional and compressive stiffness at the femur metaphysis increased in people with rowing + ZA (+ 3 to +4%) and decreased in people with rowing only (- 7 to -8%; p < 0.05). Tult in the proximal tibia decreased in everyone, but the loss was attenuated in the rowing + ZA group. People with initially stronger bone tended to lose more strength. CONCLUSION Overall, we observed increases in bone strength at the distal femur but not the proximal tibia, with FES-assisted rowing combined with ZA treatment. Rowing alone did not significantly prevent bone loss at either site, which might be attributed to insufficient mechanical loading.
Collapse
Affiliation(s)
- Y Fang
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - L R Morse
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - N Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - R A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - R F Goldstein
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, USA
| | - K L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
12
|
McMillan DW, Nash MS, Gater DR, Valderrábano RJ. Neurogenic Obesity and Skeletal Pathology in Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:57-67. [PMID: 33814883 PMCID: PMC7983641 DOI: 10.46292/sci20-00035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) results in dramatic changes in body composition, with lean mass decreasing and fat mass increasing in specific regions that have important cardiometabolic implications. Accordingly, the recent Consortium for Spinal Cord Medicine (CSCM) released clinical practice guidelines for cardiometabolic disease (CMD) in SCI recommending the use of compartmental modeling of body composition to determine obesity in adults with SCI. This recommendation is guided by the fact that fat depots impact metabolic health differently, and in SCI adiposity increases around the viscera, skeletal muscle, and bone marrow. The contribution of skeletal muscle atrophy to decreased lean mass is self-evident, but the profound loss of bone is often less appreciated due to methodological considerations. General-population protocols for dual-energy x-ray absorptiometry (DXA) disregard assessment of the sites of greatest bone loss in SCI, but the International Society for Clinical Densitometry (ISCD) recently released an official position on the use of DXA to diagnose skeletal pathology in SCI. In this review, we discuss the recent guidelines regarding the evaluation and monitoring of obesity and bone loss in SCI. Then we consider the possible interactions of obesity and bone, including emerging evidence suggesting the possible influence of metabolic, autonomic, and endocrine function on bone health in SCI.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Mark S. Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - David R. Gater
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Rodrigo J. Valderrábano
- Division of Endocrinology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| |
Collapse
|
13
|
Ifon DE, Ghatas MP, Davis JC, Khalil RE, Adler RA, Gorgey AS. Long-term effect of intrathecal baclofen treatment on bone health and body composition after spinal cord injury: A case matched report. World J Orthop 2020; 11:453-464. [PMID: 33134108 PMCID: PMC7582109 DOI: 10.5312/wjo.v11.i10.453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe spasticity may negatively impact functionality and quality of life after spinal cord injury (SCI). Intrathecal baclofen treatment (IBT) is effectively used to manage severe spasticity and reduce comorbidities. However, long-term IBT may have a negative effect on bone mineral content (BMC), bone mineral density (BMD) and body composition (such as percentage fat mass and lean body mass). We demonstrated the negative effects of long-term IBT use in a single case compared with two non-IBT users. CASE SUMMARY A 46-year old Caucasian male Veteran (case) with a 21 year history of complete tetraplegia (complete C6 SCI) was implanted with IBT for 20 years. The case was matched to two participants with different time since injuries [2 (match 1) and 13 (match 2) years] without IBT. Knee BMC and BMD at the epiphysis and metaphysis of the distal femur and proximal tibia were evaluated using dual knee and the dual femur modules of GE Lunar iDXA software. Total and leg body composition assessments were also conducted for the three participants. Potential effect of long-term IBT was demonstrated by changes in BMD, consistent with bone demineralization, at the distal femur and proximal tibia and changes in percentage fat mass and lean mass of legs. The case showed 113% lower BMD at the distal femur, and 78.1% lower at the proximal tibia compared to match 1, moreover the case showed 45% lower BMD at the distal femur, and no observed changes at the proximal tibia compared to match 2. The case had 27.1% and 16.5% greater leg %fat mass compared to match 1 and match 2, respectively. Furthermore, the case had 17.4% and 11.8% lower % leg lean mass compared to match 1 and match 2, respectively. CONCLUSION Long-term IBT may impact bone health and body composition parameters in persons with complete SCI. It may be prudent to encourage regular screening of individuals on long-term IBT considering the prevalence of osteoporosis related fractures, cardiovascular diseases, and metabolic disorders in this population.
Collapse
Affiliation(s)
- Dora E Ifon
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, Richmond, VA 23249, United States
| | - Mina P Ghatas
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, Richmond, VA 23249, United States
| | - John C Davis
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, Richmond, VA 23249, United States
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, Richmond, VA 23249, United States
| | - Robert A Adler
- Medical Service, Central Virginia VA Health Care System, Richmond, VA 23249, United States
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, Richmond, VA 23249, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23298, United States
| |
Collapse
|
14
|
Stiffness and Strength Predictions From Finite Element Models of the Knee are Associated with Lower-Limb Fractures After Spinal Cord Injury. Ann Biomed Eng 2020; 49:769-779. [PMID: 32929557 DOI: 10.1007/s10439-020-02606-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is associated with bone fragility and fractures around the knee. The purpose of this investigation was to validate a computed tomography (CT) based finite element (FE) model of the proximal tibia and distal femur under biaxial loading, and to retrospectively quantify the relationship between model predictions and fracture incidence. Twenty-six cadaveric tibiae and femora (n = 13 each) were loaded to 300 N of compression, then internally rotated until failure. FE predictions of torsional stiffness (K) and strength (Tult) explained 74% (n = 26) and 93% (n = 7) of the variation in experimental measurements, respectively. Univariate analysis and logistic regression were subsequently used to determine if FE predictions and radiographic measurements from CT and dual energy X-ray absorptiometry (DXA) were associated with prevalent lower-limb fracture in 50 individuals with SCI (n = 14 fractures). FE and CT measures, but not DXA, were lower in individuals with fracture. FE predictions of Tult at the tibia demonstrated the highest odds ratio (4.98; p = 0.006) and receiver operating characteristic (0.84; p = 0.008) but did not significantly outperform other metrics. In conclusion, CT-based FE model predictions were associated with prevalent fracture risk after SCI; this technique could be a powerful tool in future clinical research.
Collapse
|
15
|
Cirnigliaro CM, Parrott JS, Myslinski MJ, Asselin P, Lombard AT, La Fountaine MF, Kirshblum SC, Forrest GF, Dyson-Hudson T, Spungen AM, Bauman WA. Relationships between T-scores at the hip and bone mineral density at the distal femur and proximal tibia in persons with spinal cord injury. J Spinal Cord Med 2020; 43:685-695. [PMID: 31663832 PMCID: PMC7534195 DOI: 10.1080/10790268.2019.1669957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: To identify T-score values at the total hip (TH) and femoral neck (FN) that correspond to the cutoff value of <0.60 g/cm2 for heightened risk of fracture at the distal femur (DF) and proximal tibia (PT).Design: Retrospective analysis of data in a research center's database. Setting: Community-based individuals with spinal cord injury (SCI). Participants: 105 unique individuals with SCI. Outcome Measurements: DXA derived areal BMD (aBMD) and T-score of the DF, PT, TH, and FN. Results: The aBMD at the DF and PT regions were predictors of T-scores at the TH (R2 = 0.63, P < 0.001 and R2 = 0.65, P < 0.001) and FN (R2 = 0.55, P < 0.001 and R2 = 0.58, P < 0.001). Using the DF and PT aBMD of 0.60 g/cm2 as a value below which fractures were more likely to occur, the predicted T-score was -3.1 and -3.5 at the TH and -2.6 and -2.9 at the FN, respectively. However, when the predicted and observed T-score values disagree outside the 95% limit of agreement, the predicted T-score values are lower than the measured T-score values, overestimating the measured values between -2.0 and -4.0 SD. Conclusion: The DF and PT cutoff value for aBMD of 0.60 g/cm2 was a moderate predictor of T-score values at the TH and FN, with considerable inaccuracies outside the clinically acceptable limits of agreement. As such, the direct measurement of knee aBMD in persons with SCI should be performed, whenever possible, prior to prescribing weight bearing upright activities, such as robotic exoskeletal-assisted walking.
Collapse
Affiliation(s)
- Christopher M. Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Correspondence to: Christopher M. Cirnigliaro, Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY10468, USA; Ph: (718) 584-9000, Ext. 5420. ;
| | - J. Scott Parrott
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Mary Jane Myslinski
- Department of Physical Therapy, School of Biomedical and Health Sciences, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Pierre Asselin
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alexander T. Lombard
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Michael F. La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA,The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Steven C. Kirshblum
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA,Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Gail F. Forrest
- Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Trevor Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ann M. Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William A. Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Cirnigliaro CM, La Fountaine MF, Parrott JS, Kirshblum SC, McKenna C, Sauer SJ, Shapses SA, Hao L, McClure IA, Hobson JC, Spungen AM, Bauman WA. Administration of Denosumab Preserves Bone Mineral Density at the Knee in Persons With Subacute Spinal Cord Injury: Findings From a Randomized Clinical Trial. JBMR Plus 2020; 4:e10375. [PMID: 33134767 PMCID: PMC7587457 DOI: 10.1002/jbm4.10375] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Persons with neurologically motor-complete spinal cord injury (SCI) have a marked loss of bone mineral density (BMD) of the long bones of the lower extremities, predisposing them to fragility fractures, especially at the knee. Denosumab, a commercially available human monoclonal IgG antibody to receptor activator of nuclear factor-κB ligand (RANKL), may provide an immunopharmacological solution to the rapid progressive deterioration of sublesional bone after SCI. Twenty-six SCI participants with subacute motor-complete SCI were randomized to receive either denosumab (60 mg) or placebo at baseline (BL), 6, and 12 months. Areal bone mineral density (aBMD) by dual energy x-ray absorptiometry (DXA) at 18 months at the distal femur was the primary outcome and aBMD of the proximal tibia and hip were the secondary outcomes analyzed in 18 of the 26 participants (denosumab, n = 10 and placebo, n = 8). The metrics of peripheral QCT (pQCT) were the exploratory outcomes analyzed in a subsample of the cohort (denosumab, n = 7 and placebo n = 7). The mean aBMD (±95% CI) for the denosumab versus the placebo groups demonstrated a significant group × time interactions for the following regions of interest at BL and 18 months: distal femoral metaphysis = mean aBMD 1.187; 95% CI, 1.074 to 1.300 and mean aBMD 1.202; 95% CI, 1.074 to 1.329 versus mean aBMD 1.162; 95% CI, 0.962 to 1.362 and mean aBMD 0.961; 95% CI, 0.763 to 1.159, respectively (p < 0.001); distal femoral epiphysis = mean aBMD 1.557; 95% CI, 1.437 to 1.675 and mean aBMD 1.570; 95% CI, 1.440 to 1.700 versus mean aBMD 1.565; 95% CI, 1.434 to 1.696 and mean aBMD 1.103; 95% CI, 0.898 to 1.309, respectively (p = 0.002); and proximal tibial epiphysis = mean aBMD 1.071; 95% CI, 0.957 to 1.186 and mean aBMD 1.050; 95% CI, 0.932 to 1.168 versus mean aBMD 0.994; 95% CI, 0.879 to 1.109 and mean aBMD 0.760; 95% CI, 0.601 to 0.919, respectively (p < 0.001). Analysis of pQCT imaging revealed a continued trend toward significantly greater loss in total volumetric BMD (vBMD) and trabecular vBMD at the 4% distal tibia region, with a significant percent loss for total bone mineral content. Thus, at 18 months after acute SCI, our findings show that denosumab maintained aBMD at the knee region, the site of greatest clinical relevance in the SCI population. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA
| | - Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA.,Department of Physical Therapy, School of Health and Medical Sciences Seton Hall University South Orange NJ USA.,Departments of Medical Sciences and Neurology Hackensack Meridian School of Medicine at Seton Hall University Nutley NJ USA
| | - J Scott Parrott
- Department of Interdisciplinary Studies School of Health Professions, Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Steven C Kirshblum
- Kessler Institute for Rehabilitation West Orange NJ USA.,Kessler Foundation West Orange NJ USA.,Department of Physical Medicine and Rehabilitation Rutgers New Jersey Medical School Newark NJ USA
| | - Cristin McKenna
- Kessler Institute for Rehabilitation West Orange NJ USA.,Kessler Foundation West Orange NJ USA
| | - Susan J Sauer
- Kessler Institute for Rehabilitation West Orange NJ USA
| | - Sue A Shapses
- Department of Nutritional Sciences, School of Environmental and Biological Sciences Rutgers University New Brunswick NJ USA
| | - Lihong Hao
- Department of Nutritional Sciences, School of Environmental and Biological Sciences Rutgers University New Brunswick NJ USA
| | - Isa A McClure
- Kessler Institute for Rehabilitation West Orange NJ USA
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology University of Delaware Newark DE USA
| | - Ann M Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA.,Departments of Medicine and Rehabilitation and Human Performance Icahn School of Medicine at Mount Sinai New York NY USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA.,Departments of Medicine and Rehabilitation and Human Performance Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
17
|
Bone Loss and the Current Diagnosis of Osteoporosis and Risk of Fragility Fracture in Persons with Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, Liu N, Troy KL, Weaver FM, Shuhart C, Craven BC. Bone Mineral Density Testing in Spinal Cord Injury: 2019 ISCD Official Position. J Clin Densitom 2019; 22:554-566. [PMID: 31501005 DOI: 10.1016/j.jocd.2019.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes rapid osteoporosis that is most severe below the level of injury. More than half of those with motor complete SCI will experience an osteoporotic fracture at some point following their injury, with most fractures occurring at the distal femur and proximal tibia. These fractures have devastating consequences, including delayed union or nonunion, cellulitis, skin breakdown, lower extremity amputation, and premature death. Maintaining skeletal integrity and preventing fractures is imperative following SCI to fully benefit from future advances in paralysis cure research and robotic-exoskeletons, brain computer interfaces and other evolving technologies. Clinical care has been previously limited by the lack of consensus derived guidelines or standards regarding dual-energy X-ray absorptiometry-based diagnosis of osteoporosis, fracture risk prediction, or monitoring response to therapies. The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by dual-energy X-ray absorptiometry in individuals with SCI of traumatic or nontraumatic etiology. This task force conducted a series of systematic reviews to guide the development of evidence-based position statements that were reviewed by an expert panel at the 2019 Position Development Conference in Kuala Lumpur, Malaysia. The resulting the International Society of Clinical Densitometry Official Positions are intended to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Fin Biering-Soerensen
- Clinic for Spinal Cord Injuries, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tomas Cervinka
- Department of Physiotherapy and Rehabilitation, Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Therese E Johnston
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Nan Liu
- Department of Rehabilitation Medicine and Osteoporosis and Metabolic Bone Disease Center, Peking University Third Hospital, Beijing, China
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Frances M Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, IL, USA; Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Christopher Shuhart
- Swedish Bone Health and Osteoporosis Center, Swedish Medical Group, Seattle WA, USA
| | - Beverley C Craven
- Neural Engineering and Therapeutics Team, KITE Research Institute - University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
19
|
Osteoporosis in Veterans with Spinal Cord Injury: an Overview of Pathophysiology, Diagnosis, and Treatments. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-019-09265-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Lobos S, Cooke A, Simonett G, Ho C, Boyd SK, Edwards WB. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury. J Clin Densitom 2019; 22:249-256. [PMID: 29776736 DOI: 10.1016/j.jocd.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Rapid declines in bone mineral density (BMD) at the knee after spinal cord injury (SCI) are associated with an increased risk of fracture. Evaluation of bone quality using the trabecular bone score (TBS) may provide a complimentary measure to BMD assessment to examine bone health and fracture risk after SCI. The purpose of this study was to assess bone mineral density (BMD) and trabecular bone score (TBS) at the knee in individuals with and without SCI. Nine individuals with complete SCI (mean time since SCI 2.9 ± 3.8 yr) and 9 non-SCI controls received dual-energy X-ray absorptiometry scans of the right knee using the lumbar spine protocol. BMD and TBS were quantified at epiphyseal, metaphyseal, diaphyseal, and total bone regions of the distal femur and proximal tibia. Individuals with SCI illustrated significantly lower total BMD at the distal femur (23%; p = 0.029) and proximal tibia (19%; p = 0.02) when compared with non-SCI controls. Despite these marked differences in BMD from both locations, significant differences in total TBS were observed at the distal femur only (6%; p = 0.023). The observed differences in total BMD and TBS could be attributed to reductions in epiphyseal rather than metaphyseal or diaphysis measurements. The relationship between TBS and duration of SCI was well explained by a logarithmic trend at the distal femoral epiphysis (r2 = 0.54, p = 0.025). The logarithmic trend would predict that after 3 yr of SCI, TBS would be approximately 6% lower than the non-SCI controls. Further evaluation is needed to determine if TBS measures at the knee provide important information about bone quality that is not captured by traditional BMD.
Collapse
Affiliation(s)
- Stacey Lobos
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Anne Cooke
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Gillian Simonett
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
21
|
Rodríguez-Gómez I, Martín-Manjarrés S, Martín-García M, Vila-Maldonado S, Gil-Agudo Á, M. Alegre L, Ara I. Cardiorespiratory fitness and arm bone mineral health in young males with spinal cord injury: the mediator role of lean mass. J Sports Sci 2018; 37:717-725. [DOI: 10.1080/02640414.2018.1522948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Irene Rodríguez-Gómez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Soraya Martín-Manjarrés
- Department of Physical Medicine and Rehabilitation, National Hospital for Paraplegics. SESCAM, Toledo, Spain
| | - María Martín-García
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Sara Vila-Maldonado
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ángel Gil-Agudo
- Biomechanics and Technical Aids Unit, Department of Physical Medicine and Rehabilitation, National Hospital for Spinal Cord Injury. SESCAM, Toledo, Spain
| | - Luis M. Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
22
|
Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, Gregory EK, Kim KH, Parachuri R, Troy KL, Schnitzer TJ. Effects of Teriparatide and Vibration on Bone Mass and Bone Strength in People with Bone Loss and Spinal Cord Injury: A Randomized, Controlled Trial. J Bone Miner Res 2018; 33:1729-1740. [PMID: 29905973 DOI: 10.1002/jbmr.3525] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) is associated with marked bone loss and an increased risk of fracture. We randomized 61 individuals with chronic SCI and low bone mass to receive either teriparatide 20 μg/d plus sham vibration 10 min/d (n = 20), placebo plus vibration 10 min/d (n = 20), or teriparatide 20 μg/d plus vibration 10 min/d (n = 21). Patients were evaluated for 12 months; those who completed were given the opportunity to participate in an open-label extension where all participants (n = 25) received teriparatide 20 μg/d for an additional 12 months and had the optional use of vibration (10 min/d). At the end of the initial 12 months, both groups treated with teriparatide demonstrated a significant increase in areal bone mineral density (aBMD) at the spine (4.8% to 5.5%). The increase in spine aBMD was consistent with a marked response in serum markers of bone metabolism (ie, CTX, P1NP, BSAP), but no treatment effect was observed at the hip. A small but significant increase (2.2% to 4.2%) in computed tomography measurements of cortical bone at the knee was observed in all groups after 12 months; however, the magnitude of response was not different amongst treatment groups and improvements to finite element-predicted bone strength were not observed. Teriparatide treatment after the 12-month extension resulted in further increases to spine aBMD (total increase from baseline 7.1% to 14.4%), which was greater in patients initially randomized to teriparatide. Those initially randomized to teriparatide also demonstrated 4.4% to 6.7% improvements in hip aBMD after the 12-month extension, while all groups displayed increases in cortical bone measurements at the knee. To summarize, teriparatide exhibited skeletal activity in individuals with chronic SCI that was not augmented by vibration stimulation. Without additional confirmatory data, the location-specific responses to teriparatide would not be expected to provide clinical benefit in this population. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Northwestern University Clinical and Translational Sciences Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alan S Anschel
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - David Chen
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Elaine K Gregory
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ki H Kim
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | | | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Lobos S, Cooke A, Simonett G, Ho C, Boyd SK, Edwards WB. Assessment of Bone Mineral Density at the Distal Femur and the Proximal Tibia by Dual-Energy X-ray Absorptiometry in Individuals With Spinal Cord Injury: Precision of Protocol and Relation to Injury Duration. J Clin Densitom 2018; 21:338-346. [PMID: 28662973 DOI: 10.1016/j.jocd.2017.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Spinal cord injury (SCI) is characterized by marked bone loss at the knee, and there is a need for established dual-energy X-ray absorptiometry (DXA) protocols to examine bone mineral density (BMD) at this location to track therapeutic progress and to monitor fracture risk. The purpose of this study was to quantify the precision and reliability of a DXA protocol for BMD assessment at the distal femur and the proximal tibia in individuals with SCI. The protocol was subsequently used to investigate the relationship between BMD and duration of SCI. Nine individuals with complete SCI and 9 able-bodied controls underwent 3 repeat DXA scans in accordance with the short-term precision methodology recommended by the International Society of Clinical Densitometry. The DXA protocol demonstrated a high degree of precision with the root-mean-square standard deviation ranging from 0.004 to 0.052 g/cm2 and the root-mean-square coefficient of variation ranging from 0.6% to 4.4%, depending on the bone, the region of interest, and the rater. All measurements of intra- and inter-rater reliability were excellent with an intraclass correlation of ≥0.950. The relationship between the BMD and the duration of SCI was well described by a logarithmic trend (r2 = 0.68-0.92). Depending on the region of interest, the logarithmic trends would predict that, after 3 yr of SCI, BMD at the knee would be 43%-19% lower than that in the able-bodied reference group. We believe the DXA protocol has the level of precision and reliability required for short-term assessments of BMD at the distal femur and the proximal tibia in people with SCI. However, further work is required to determine the degree to which this protocol may be used to assess longitudinal changes in BMD after SCI to examine clinical interventions and to monitor fracture risk.
Collapse
Affiliation(s)
- Stacey Lobos
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Anne Cooke
- McCaig Institute for Bone and Joint Health, University of Calgary, University of Calgary, Calgary, Canada
| | - Gillian Simonett
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, University of Calgary, Calgary, Canada; Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
24
|
Cirnigliaro CM, Myslinski MJ, La Fountaine MF, Kirshblum SC, Forrest GF, Bauman WA. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options. Osteoporos Int 2017; 28:747-765. [PMID: 27921146 DOI: 10.1007/s00198-016-3798-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
Persons with spinal cord injury (SCI) undergo immediate unloading of the skeleton and, as a result, have severe bone loss below the level of lesion associated with increased risk of long-bone fractures. The pattern of bone loss in individuals with SCI differs from other forms of secondary osteoporosis because the skeleton above the level of lesion remains unaffected, while marked bone loss occurs in the regions of neurological impairment. Striking demineralization of the trabecular epiphyses of the distal femur (supracondylar) and proximal tibia occurs, with the knee region being highly vulnerable to fracture because many accidents occur while sitting in a wheelchair, making the knee region the first point of contact to any applied force. To quantify bone mineral density (BMD) at the knee, dual energy x-ray absorptiometry (DXA) and/or computed tomography (CT) bone densitometry are routinely employed in the clinical and research settings. A detailed review of imaging methods to acquire and quantify BMD at the distal femur and proximal tibia has not been performed to date but, if available, would serve as a reference for clinicians and researchers. This article will discuss the risk of fracture at the knee in persons with SCI, imaging methods to acquire and quantify BMD at the distal femur and proximal tibia, and treatment options available for prophylaxis against or reversal of osteoporosis in individuals with SCI.
Collapse
Affiliation(s)
- C M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - M J Myslinski
- Department of Physical Therapy, School of Health Related Professions, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - M F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
- The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
| | - S C Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - G F Forrest
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Kessler Foundation, West Orange, NJ, USA
| | - W A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
- Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Peppler WT, Kim WJ, Ethans K, Cowley KC. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury. Spinal Cord 2016; 55:483-488. [PMID: 27995940 DOI: 10.1038/sc.2016.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Methodological validation of dual-energy x-ray absorptiometry (DXA)-based measures of leg bone mineral density (BMD) based on the guidelines of the International Society for Clinical Densitometry. OBJECTIVES The primary objective of this study was to determine the precision of BMD estimates at the knee and heel using the manufacturer provided DXA acquisition algorithm. The secondary objective was to determine the smallest change in DXA-based measurement of BMD that should be surpassed (least significant change (LSC)) before suggesting that a biological change has occurred in the distal femur, proximal tibia and calcaneus. SETTING Academic Research Centre, Canada. METHODS Ten people with motor-complete SCI of at least 2 years duration and 10 people from the general population volunteered to have four DXA-based measurements taken of their femur, tibia and calcaneus. BMDs for seven regions of interest (RIs) were calculated, as were short-term precision (root-mean-square (RMS) standard deviation (g cm-2), RMS-coefficient of variation (RMS-CV, %)) and LSC. RESULTS Overall, RMS-CV values were similar between SCI (3.63-10.20%, mean=5.3%) and able-bodied (1.85-5.73%, mean=4%) cohorts, despite lower absolute BMD values at each RIs in those with SCI (35%, heel to 54%, knee; P<0.0001). Precision was highest at the calcaneus and lowest at the femur. Except at the femur, RMS-CV values were under 6%. CONCLUSIONS For DXA-based estimates of BMD at the distal femur, proximal tibia and calcaneus, these precision values suggest that LSC values >10% are needed to detect differences between treated and untreated groups in studies aimed at reducing bone mineral loss after SCI.
Collapse
Affiliation(s)
- W T Peppler
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| | - W J Kim
- Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - K Ethans
- Section of Physical Medicine and Rehabilitation, Department of Medicine and Rehabilitation, Department of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - K C Cowley
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Schnitzer TJ, Kim K, Marks J, Yeasted R, Simonian N, Chen D. Zoledronic Acid Treatment After Acute Spinal Cord Injury: Results of a Randomized, Placebo-Controlled Pilot Trial. PM R 2016; 8:833-43. [PMID: 26828618 DOI: 10.1016/j.pmrj.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/28/2015] [Accepted: 01/23/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine the effect of intravenous zoledronic acid 5 mg on the extent and course of bone loss after spinal cord injury (SCI). DESIGN Double-blind, randomized, placebo-controlled parallel-group trial. SETTING Acute in-patient, tertiary-care rehabilitation hospital. PARTICIPANTS Convenience sample of 17 in-patients with SCI <12 weeks before randomization; American Spinal Injury Association Impairment scale A, B, or C and medically stable. Twelve patients were evaluated at the primary endpoint at 6 months. METHODS Patients meeting study criteria were randomly assigned to zoledronic acid 5 mg or matching placebo. Dual x-ray absorptiometry scan and serum for bone markers (type 1 procollagen amino-terminal propeptide, bone-specific alkaline phosphatase, collagen type 1 cross-linked C-telopeptide) were obtained at baseline and after 3 months, 6 months, and the every 6 months for up to 2 years. MAIN OUTCOME MEASURES The primary endpoint was change in bone mineral density (BMD) at the total hip after 6 months; secondary endpoints were changes in BMD at other skeletal sites and changes in levels of serum bone markers. RESULTS The group treated with zoledronic acid had a smaller decrease in BMD at 6 months at the total hip than the placebo group (right: -2.2 ± 3.4% versus -8.6 ± 3.5%, respectively, P = .03; left: -3.7 ± 1.0% versus -12.3 ± 6.9%, P = .03). Differences in BMD at the femoral neck were similar (right: -5.1 ± 6.5% versus -20.0 ± 6.4%, P = .01; left: -1.1 ± 3.5% versus -11.1 ± 7.4%, P = .02) with larger bone loss and smaller between group differences at the knee. Zoledronic acid resulted in a decrease in serum levels of both formation and resorption markers. CONCLUSIONS Zoledronic acid is effective at mitigating bone loss after SCI. Duration of efficacy and activity at different skeletal sites may differ from that observed in able-bodied individuals and needs further study.
Collapse
Affiliation(s)
- Thomas J Schnitzer
- Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611(∗).
| | - Ki Kim
- Northwestern University Feinberg School of Medicine, Chicago, IL; Rehabilitation Institute of Chicago, Chicago, IL(†)
| | - Julia Marks
- Northwestern University Feinberg School of Medicine, Chicago, IL(‡)
| | - Renita Yeasted
- Northwestern University Feinberg School of Medicine, Chicago, IL(§)
| | - Narina Simonian
- Northwestern University Feinberg School of Medicine, Chicago, IL(¶)
| | - David Chen
- Northwestern University Feinberg School of Medicine, Chicago, IL; Rehabilitation Institute of Chicago, Chicago, IL(#)
| |
Collapse
|
27
|
Grover K, Lin L, Hu M, Muir J, Qin YX. Spatial distribution and remodeling of elastic modulus of bone in micro-regime as prediction of early stage osteoporosis. J Biomech 2016; 49:161-6. [PMID: 26705110 PMCID: PMC4761497 DOI: 10.1016/j.jbiomech.2015.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 11/24/2022]
Abstract
We assessed the local distribution of bone mechanical properties on a micro-nano-scale and its correlation to strain distribution. Left tibia samples were obtained from 5-month old female Sprague Dawley rats, including baseline control (n=9) and hindlimb suspended (n=9) groups. Elastic modulus was measured by nanoindentation at the dedicated locations. Three additional tibias from control rats were loaded axially to measure bone strain, with 6-10N at 1Hz on a Bose machine for strain measurements. In the control group, the difference of the elastic modulus between periosteum and endosteum was much higher at the anterior and posterior regions (2.6GPa), where higher strain differences were observed (45μɛ). Minimal elastic modulus difference between periosteum and endosteum was observed at the medial region (0.2GPa), where neutral axis of the strain distribution was oriented with lower strain difference (5μɛ). In the disuse group, however, the elastic modulus differences in the anterior posterior regions reduced to 1.2GPa from 2.6GPa in the control group, and increased in the medial region to 2.7GPa from 0.2GPa. It is suggested that the remodeling rate in a region of bone is possibly influenced by the strain gradient from periosteum to endosteum. Such pattern of moduli gradients was compromised in disuse osteopenia, suggesting that the remodeling in distribution of micro-nano-elastic moduli among different regions may serve as a predictor for early stage of osteoporosis.
Collapse
Affiliation(s)
- Kartikey Grover
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Liangjun Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Jesse Muir
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
28
|
Troy KL, Morse LR. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction. Top Spinal Cord Inj Rehabil 2015; 21:267-74. [PMID: 26689691 PMCID: PMC4750811 DOI: 10.1310/sci2104-267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. METHODS We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. CONCLUSIONS Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.
Collapse
Affiliation(s)
- Karen L. Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Leslie R. Morse
- Spaulding-Harvard SCI Model System, Spaulding Rehabilitation Hospital, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Abstract
Spinal cord injury (SCI) is characterized by marked bone loss and an increased risk of fracture with high complication rate. Recent research based on advanced imaging analysis, including quantitative computed tomography (QCT) and patient-specific finite element (FE) modeling, has provided new and important insights into the magnitude and temporal pattern of bone loss, as well as the associated changes to bone structure and strength, following SCI. This work has illustrated the importance of early therapeutic treatment to prevent bone loss after SCI and may someday serve as the basis for a clinical fracture risk assessment tool for the SCI population. This review provides an update on the epidemiology of fracture after SCI and discusses new findings and significant developments related to bone loss and fracture risk assessment in the SCI population based on QCT analysis and patient-specific FE modeling.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, and Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada,
| | | |
Collapse
|