1
|
Dong C, Sun Q, Zheng F, Ji J, Xu X, Yao X, Gan D. Heavy moxibustion at Sanyin point ameliorates neurogenic bladder dysfunction in spinal cord injury rats through the PI3 K/mTOR pathway. J Spinal Cord Med 2024:1-11. [PMID: 39660978 DOI: 10.1080/10790268.2024.2420431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The present study aims to investigate the effect and mechanism of heavy moxibustion (100 moxa-cone) at Sanyin point (the common point of Yin and kidney) on the function of neurogenic bladder (NB) dysfunction in rats with spinal cord injury (SCI). METHODS Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6): control, NB, NB + Moxibustion, and NB + Moxibustion + YS-49 (PI3 K agonist). The rats in control groups accepted a cut open of the skin, fascia, and muscle. The NB model was established using spinal cord transection. Fourteen days later, animals received heavy moxibustion at Sanyin point for three weeks or/and intraperitoneal administration of YS-49 (a PI3 K agonist). Basso, Beattie, and Bresnahan (BBB) scale, urodynamic parameters, bladder size, and weight were measured. The hematoxylin-eosin staining method was used to observe the histology of the bladder mucosa. Moreover, NB dysfunction after SCI could be restored by autophagy activation and autophagy is mediated by the PI3 K/Akt/mTOR pathway. Therefore, the expressions of autophagy factor (LC3 II/I and p62), PI3 K, and p-mTOR in the bladder mucosa were evaluated by western blotting. RESULTS Heavy moxibustion treatment relieved the development of NB dysfunction in rats with SCI, with an increase in the bladder voiding efficiency and a decrease in afferent activity during storage in the moxibustion group compared with the NB group. The expression levels of LC3 II/I were markedly elevated by moxibustion, accompanied by a decrease in the levels of p62. YS-49 addition increased the PI3 K and p-mTOR expression which were down-regulated by moxibustion. Importantly, YS-49 reversed the effects of moxibustion on autophagy and bladder function. CONCLUSION Heavy moxibustion at Sanyin point exerted its effect on healing-impaired NB dysfunction in rats with SCI, possibly activating autophagy through the PI3 K/mTOR pathway.
Collapse
Affiliation(s)
- Chunxuan Dong
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Qibin Sun
- Department of Workstation of Sun Qibin, The Famous Old TCM Doctor in China, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Fangjiang Zheng
- Department of Publicity, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Jing Ji
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Xiumei Xu
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Xingzhang Yao
- Department of Orthopedic Reconstruction, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Decheng Gan
- Department of Traditional Chinese Medicine, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Ma L, Mu Y, Li X, Zhang M, An W, Zeng F. Expression of transforming growth factor-β1 and autophagy markers in the bladder of rats with neurogenic lower urinary tract injury. Spinal Cord 2023; 61:154-159. [PMID: 36319684 DOI: 10.1038/s41393-022-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This study was conducted to explore the expression of transforming growth factor-beta 1 (TGF-β1) and its correlation with autophagy markers in the bladder of rats with neurogenic lower urinary tract dysfunction (NLUTD) post spinal cord injury (SCI). STUDY DESIGN A total of 36 male Wistar rats were randomly divided into the SCI group and control group. Rats in the SCI group were subjected to T10-T11 spinal cord transection. At day 1, 4, and 7, 6 rats were euthanized daily and the Basso, Beattie and Bresnahan score (BBB score), post-void residual (PVR), urinary bladder function score (UBFS) and bladder weight were assessed. The expression TGF-β1 and autophagy markers were evaluated by immunofluorescence staining, Western bolt, and qRT-PCR. SETTING A total of 36 male Wistar rats were randomly divided into the SCI group and control group, with three time points in each group. PARTICIPANTS Not applicable. RESULTS SCI modeling impaired the motor function of the hind limbs and the bladder function of rats. NLUTD muscle exhibited a punctated immunostaining pattern for LC3, suggesting the accumulation of autophagosomes. Our results further indicated that compared with the control group, the expression levels of TGF-β1 and LC3 were increased, while the level of P62 was decreased after SCI modeling. CONCLUSION TGF-β1 was significantly increased in SCI rats with NLUTD and was correlated with autophagy markers LC3 and p62.
Collapse
Affiliation(s)
- Lili Ma
- Department of Rehabilitation Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Avenue, Jinan, 250033, Shandong, China.,Department of Neurology, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Ying Mu
- Department of Intensive Care Medicine, Zhangdian People's Hospital, No. 63, Jinjing Road, Zibo, 255036, Shandong, China
| | - Xiangqing Li
- Department of Neurology, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Ming Zhang
- Department of Rehabilitation Medicine, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Wenhan An
- Department of Rehabilitation Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Avenue, Jinan, 250033, Shandong, China
| | - Fanshuo Zeng
- Department of Rehabilitation Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Avenue, Jinan, 250033, Shandong, China.
| |
Collapse
|
3
|
Shao R, Zhang L, Yang H, Wang Y, Zhang Z, Yue J, Chen Y, Pan H, Zhou H, Quan R. Autophagy activation promotes the effect of iPSCs-derived NSCs on bladder function restoration after spinal cord injury. Tissue Cell 2021; 72:101596. [PMID: 34333229 DOI: 10.1016/j.tice.2021.101596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 02/01/2023]
Abstract
The role of autophagy in the transplantation of induced pluripotent stem cells (iPSCs)-derived neural stem cells (NSCs) to treat spinal cord injury (SCI) and neurogenic bladder was investigated in this study. NSCs derived from human iPSCs were identified by and immunofluorescence assay. To clarify the role of autophagy, iPSCs were treated with either an autophagy inducer (rapamycin), or an autophagy inhibitor (chloroquine). Cell Counting kit-8 (CCK-8), western blot and flow cytometry were used to detect the effect of autophagy on the viability and differentiation of iPSCs. Sixty Wistar rats were selected to establish the SCI model and treated with iPSCs-derived NSCs transplantation. The effect of autophagy on the bladder function of rats with different treatments was evaluated by Basso, Beattie, and Bresnahan (BBB) score, bladder function score, bladder weight measurement, Hematoxylin & Eosin (H&E) staining, and Masson staining. The results of in vitro experiment showed that rapamycin enhanced the cell activity of iPSCs, increased the number of nestin positive cells, up-regulated Beclin-1 and LC3BI/II expressions, and down-regulated p62 expression. And the results of in vivo experiment showed that rapamycin improved exercise ability and bladder function, partially restored bladder weight, and significantly reduced bladder tissue damage in SCI rats. However, chloroquine showed the opposite results. The differentiation of iPSCs into NSCs could be promoted by induced autophagy, while neurogenic bladder of SCI was restored by autophagy activation.
Collapse
Affiliation(s)
- Rongxue Shao
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, China.
| | - Liang Zhang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Hejie Yang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Yanbin Wang
- Department of Urology, The Third People's Hospital of Hangzhou, China
| | - Zhijing Zhang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Jun Yue
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Yipeng Chen
- Research Institute of Orthopedics, Zhejiang Chinese Medical University, China
| | - Hao Pan
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Hui Zhou
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Renfu Quan
- Department of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, China
| |
Collapse
|
4
|
Kuo HC, Jhang JF, Jiang YH, Hsu YH, Ho HC. Pathogenesis evidence from human and animal models of detrusor underactivity. Tzu Chi Med J 2021; 34:287-296. [PMID: 35912048 PMCID: PMC9333099 DOI: 10.4103/tcmj.tcmj_284_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/02/2021] [Indexed: 11/06/2022] Open
Abstract
Detrusor underactivity (DU) is a common urodynamic diagnosis in patients with lower urinary tract symptoms and large post-voiding residual volume. Animal and human studies showed the possible etiologies of DU include central or peripheral nerve injury, bladder outlet obstruction, chronic ischemia, aging, diabetes mellitus, and sympathetic inhibition of micturition reflex. Evidence from animal and human DU studies with various etiologies revealed highly similar gross and histological characteristics in the bladders, including increased bladder weight, bladder wall thickening, inflammation, collagen deposition, and fibrosis. In electron microscopy, smooth muscle destruction, swollen mitochondria, decreased nerve innervation, caveolae, and umbrella cell fusiform vesicles were noted in the DU bladders. Most animal DU models demonstrate detrusor contractility changes from compensatory to the decompensatory stage, and the change was compatible with human DU observation. The cystometry in the DU animal studies is characterized by impaired contractility, prolong intercontraction interval, and hyposensation, while in vitro bladder muscle strips experiment may exhibit normal detrusor contractility. Decreased bladder blood flow and increased oxidative stress in bladders had been proved in different animal DU models, suggesting they should be important in the DU pathogenesis pathway. Sensory receptors mRNA and protein expression changes in DU bladders had been observed in both animal and human studies, including muscarinic receptors M2, M3, adrenergic receptor β3, purinergic receptor P2X1, P2X3, and transient receptor potential vanilloid (TRPV) 1 and TRPV4. Although some of the sensory receptors changes remain controversial, it might be the target for further pharmacologic treatments.
Collapse
|
5
|
Holmes GM, Hubscher CH, Krassioukov A, Jakeman LB, Kleitman N. Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. J Spinal Cord Med 2019; 43:165-176. [PMID: 31556844 PMCID: PMC7054945 DOI: 10.1080/10790268.2019.1661697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: In order to encourage the inclusion of bladder and bowel outcome measures in preclinical spinal cord injury (SCI) research, this paper identifies and categorizes 1) fundamental, 2) recommended, 3) supplemental and 4) exploratory sets of outcome measures for pre-clinical assessment of bladder and bowel function with broad applicability to animal models of SCI.Methods: Drawing upon the collective research experience of autonomic physiologists and informed in consultation with clinical experts, a critical assessment of currently available bladder and bowel outcome measures (histological, biochemical, in vivo functional, ex vivo physiological and electrophysiological tests) was made to identify the strengths, deficiencies and ease of inclusion for future studies of experimental SCI.Results: Based upon pre-established criteria generated by the Neurogenic Bladder and Bowel Working Group that included history of use in experimental settings, citations in the literature by multiple independent groups, ease of general use, reproducibility and sensitivity to change, three fundamental measures each for bladder and bowel assessments were identified. Briefly defined, these assessments centered upon tissue morphology, voiding efficiency/volume and smooth muscle-mediated pressure studies. Additional assessment measures were categorized as recommended, supplemental or exploratory based upon the balance between technical requirements and potential mechanistic insights to be gained by the study.Conclusion: Several fundamental assessments share reasonable levels of technical and material investment, including some that could assess bladder and bowel function non-invasively and simultaneously. Such measures used more inclusively across SCI studies would advance progress in this high priority area. When complemented with a few additional investigator-selected study-relevant supplemental measures, they are highly recommended for research programs investigating the efficacy of therapeutic interventions in preclinical animal models of SCI that have a bladder and/or bowel focus.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA,Correspondence to: Gregory M. Holmes, Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17036, USA. ;
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Andrei Krassioukov
- ICORD, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver, Canada
| | - Lyn B. Jakeman
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|