1
|
Chu S, Avery A, Yoshimoto J, Bryan JN. Genome wide exploration of the methylome in aggressive B-cell lymphoma in Golden Retrievers reveals a conserved hypermethylome. Epigenetics 2022; 17:2022-2038. [PMID: 35912844 PMCID: PMC9665123 DOI: 10.1080/15592294.2022.2105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few recurrent DNA mutations are seen in aggressive canine B cell lymphomas (cBCL), suggesting other frequent drivers. The methylated island recovery assay (MIRA-seq) or methylated CpG-binding domain sequencing (MBD-seq) was used to define the genome-wide methylation profiles in aggressive cBCL in Golden Retrievers to determine if cBCL can be better defined by epigenetic changes than by DNA mutations. DNA hypermethylation patterns were relatively homogenous within cBCL samples in Golden Retrievers, in different breeds and in geographical regions. Aberrant hypermethylation is thus suspected to be a central and early event in cBCL lymphomagenesis. Distinct subgroups within cBCL in Golden Retrievers were not identified with DNA methylation profiles. In comparison, the methylome profile of human DLBCL (hDLBCL) is relatively heterogeneous. Only moderate similarity between hDLBCL and cBCL was seen and cBCL likely cannot be accurately classified into the subtypes seen in hDLBCL. Genes with hypermethylated regions in the promoter-TSS-first exon of cBCL compared to normal B cells often also had additional hyper- and hypomethylated regions distributed throughout the gene suggesting non-randomized repeat targeting of key genes by epigenetic mechanisms. The prevalence of hypermethylation in transcription factor families in aggressive cBCL may represent a fundamental step in lymphomagenesis.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| | - Anne Avery
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| |
Collapse
|
2
|
Dahale S, Ruiz-Orera J, Silhavy J, Hübner N, van Heesch S, Pravenec M, Atanur SS. Cap analysis of gene expression reveals alternative promoter usage in a rat model of hypertension. Life Sci Alliance 2022; 5:5/4/e202101234. [PMID: 34996843 PMCID: PMC8742872 DOI: 10.26508/lsa.202101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
The role of alternative promoter usage in tissue-specific gene expression has been well established; however, its role in complex diseases is poorly understood. We performed cap analysis of gene expression (CAGE) sequencing from the left ventricle of a rat model of hypertension, the spontaneously hypertensive rat (SHR), and a normotensive strain, Brown Norway to understand the role of alternative promoter usage in complex disease. We identified 26,560 CAGE-defined transcription start sites in the rat left ventricle, including 1,970 novel cardiac transcription start sites. We identified 28 genes with alternative promoter usage between SHR and Brown Norway, which could lead to protein isoforms differing at the amino terminus between two strains and 475 promoter switching events altering the length of the 5' UTR. We found that the shift in Insr promoter usage was significantly associated with insulin levels and blood pressure within a panel of HXB/BXH recombinant inbred rat strains, suggesting that hyperinsulinemia due to insulin resistance might lead to hypertension in SHR. Our study provides a preliminary evidence of alternative promoter usage in complex diseases.
Collapse
Affiliation(s)
- Sonal Dahale
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, UK.,Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité -Universitätsmedizin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | | | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Santosh S Atanur
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, UK .,The National Institute for Health Research, Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College London, London, UK
| |
Collapse
|
3
|
Zinski AL, Carrion S, Michal JJ, Gartstein MA, Quock RM, Davis JF, Jiang Z. Genome-to-phenome research in rats: progress and perspectives. Int J Biol Sci 2021; 17:119-133. [PMID: 33390838 PMCID: PMC7757052 DOI: 10.7150/ijbs.51628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023] Open
Abstract
Because of their relatively short lifespan (<4 years), rats have become the second most used model organism to study health and diseases in humans who may live for up to 120 years. First-, second- and third-generation sequencing technologies and platforms have produced increasingly greater sequencing depth and accurate reads, leading to significant advancements in the rat genome assembly during the last 20 years. In fact, whole genome sequencing (WGS) of 47 strains have been completed. This has led to the discovery of genome variants in rats, which have been widely used to detect quantitative trait loci underlying complex phenotypes based on gene, haplotype, and sweep association analyses. DNA variants can also reveal strain, chromosome and gene functional evolutions. In parallel, phenome programs have advanced significantly in rats during the last 15 years and more than 10 databases host genome and/or phenome information. In order to discover the bridges between genome and phenome, systems genetics and integrative genomics approaches have been developed. On the other hand, multiple level information transfers from genome to phenome are executed by differential usage of alternative transcriptional start (ATS) and polyadenylation (APA) sites per gene. We used our own experiments to demonstrate how alternative transcriptome analysis can lead to enrichment of phenome-related causal pathways in rats. Development of advanced genome-to-phenome assays will certainly enhance rats as models for human biomedical research.
Collapse
Affiliation(s)
- Amy L. Zinski
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Shane Carrion
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Raymond M. Quock
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| |
Collapse
|
4
|
Alam T, Agrawal S, Severin J, Young RS, Andersson R, Arner E, Hasegawa A, Lizio M, Ramilowski JA, Abugessaisa I, Ishizu Y, Noma S, Tarui H, Taylor MS, Lassmann T, Itoh M, Kasukawa T, Kawaji H, Marchionni L, Sheng G, R R Forrest A, Khachigian LM, Hayashizaki Y, Carninci P, de Hoon MJL. Comparative transcriptomics of primary cells in vertebrates. Genome Res 2020; 30:951-961. [PMID: 32718981 PMCID: PMC7397866 DOI: 10.1101/gr.255679.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species.
Collapse
Affiliation(s)
- Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Robert S Young
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, United Kingdom.,MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Marina Lizio
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | | | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yuri Ishizu
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama 230-0045, Japan
| | - Shohei Noma
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hiroshi Tarui
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama 230-0045, Japan
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Timo Lassmann
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako 351-0198, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako 351-0198, Japan
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Alistair R R Forrest
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Harry Perkins Institute of Medical Research, and the Centre for Medical Research, University of Western Australia, QEII Medical Centre, Perth, WA 6009, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | | | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | | |
Collapse
|
5
|
Li C, Lenhard B, Luscombe NM. Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome. Genome Res 2018; 28:676-688. [PMID: 29618487 PMCID: PMC5932608 DOI: 10.1101/gr.231449.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
Understanding the molecular mechanisms and evolution of the gene regulatory system remains a major challenge in biology. Transcription start sites (TSSs) are especially interesting because they are central to initiating gene expression. Previous studies revealed widespread transcription initiation and fast turnover of TSSs in mammalian genomes. Yet, how new TSSs originate and how they evolve over time remain poorly understood. To address these questions, we analyzed ∼200,000 human TSSs by integrating evolutionary (inter- and intra-species) and functional genomic data, particularly focusing on evolutionarily young TSSs that emerged in the primate lineage. TSSs were grouped according to their evolutionary age using sequence alignment information as a proxy. Comparisons of young and old TSSs revealed that (1) new TSSs emerge through a combination of intrinsic factors, like the sequence properties of transposable elements and tandem repeats, and extrinsic factors such as their proximity to existing regulatory modules; (2) new TSSs undergo rapid evolution that reduces the inherent instability of repeat sequences associated with a high propensity of TSS emergence; and (3) once established, the transcriptional competence of surviving TSSs is gradually enhanced, with evolutionary changes subject to temporal (fewer regulatory changes in younger TSSs) and spatial constraints (fewer regulatory changes in more isolated TSSs). These findings advance our understanding of how regulatory innovations arise in the genome throughout evolution and highlight the genomic robustness and evolvability in these processes.
Collapse
Affiliation(s)
- Cai Li
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Nicholas M Luscombe
- The Francis Crick Institute, London NW1 1AT, United Kingdom.,UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom.,Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan
| |
Collapse
|