1
|
Sadeghi M, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Namdar A, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potential of HO-1 in leukemia and MDS. Cell Commun Signal 2023; 21:57. [PMID: 36915102 PMCID: PMC10009952 DOI: 10.1186/s12964-023-01074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is proven to have anti-apoptotic effects in several malignancies. In addition, HO-1 is reported to cause chemoresistance and increase cell survival. Growing evidence indicates that HO-1 contributes to the course of hematological malignancies as well. Here, the expression pattern, prognostic value, and the effect of HO-1 targeting in HMs are discussed. MAIN BODY According to the recent literature, it was discovered that HO-1 is overexpressed in myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), acute myeloblastic leukemia (AML), and acute lymphoblastic leukemia (ALL) cells and is associated with high-risk disease. Furthermore, in addition to HO-1 expression by leukemic and MDS cells, CML, AML, and ALL leukemic stem cells express this protein as well, making it a potential target for eliminating minimal residual disease (MRD). Moreover, it was concluded that HO-1 induces tumor progression and prevents apoptosis through various pathways. CONCLUSION HO-1 has great potential in determining the prognosis of leukemia and MDS patients. HO-1 induces resistance to several chemotherapeutic agents as well as tyrosine kinase inhibitors and following its inhibition, chemo-sensitivity increases. Moreover, the exact role of HO-1 in Chronic Lymphocytic Leukemia (CLL) is yet unknown. While findings illustrate that MDS and other leukemic patients could benefit from HO-1 targeting. Future studies can help broaden our knowledge regarding the role of HO-1 in MDS and leukemia. Video abstract.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
3
|
Fang PH, Lai YY, Chen CL, Wang HY, Chang YN, Lin YC, Yan YT, Lai CH, Cheng B. Cobalt protoporphyrin promotes human keratinocyte migration under hyperglycemic conditions. Mol Med 2022; 28:71. [PMID: 35739477 PMCID: PMC9219158 DOI: 10.1186/s10020-022-00499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Complete healing of diabetic wounds continues to be a clinically unmet need. Although robust therapies such as stem cell therapy and growth factor treatment are clinically applied, these treatments are costly for most diabetic wound patients. Therefore, a cheaper alternative is needed. Cobalt protoporphyrin (CoPP) has recently been demonstrated to promote tissue regeneration. In this study, the therapeutic benefits of CoPP in diabetic wound healing were examined. Methods An in vitro wound healing model that mimics re-epithelialization was established to examine the effect of CoPP on the migratory capability of human keratinocytes (HaCaT) in either normal glucose (NG) or high glucose (HG) media, as well as in the presence of either H2O2 or lipopolysaccharide (LPS). At the end of the migration assays, cells were collected and subjected to Western blotting analysis and immunostaining. Results HaCaT were found to migrate significantly more slowly in the HG media compared to the NG media. CoPP treatment was found to enhance cell migration in HG media, but was found to decrease cell migration and proliferation when HaCaT were cultured in NG media. CoPP treatment induced high levels of expression of Nrf-2/HO-1 and FoxO1 in HaCaT cultured in either glucose concentration, although the FoxO1 expression was found to be significantly higher in HaCaT that underwent the migration assay in NG media compared to those in HG media. The higher level of FoxO1 expression seen in CoPP-treated HaCaT cultured in NG media resulted in upregulation of CCL20 and downregulation of TGFβ1. In contrast, HaCaT migrated in HG media were found to have high levels of expression of TGFβ1, and low levels of expression of CCL20. Interestingly, in the presence of H2O2, CoPP-pretreated HaCaT cultured in either NG or HG media had similar expression level of Nrf-2/HO-1 and FoxO1 to each other. Moreover, the anti-apoptotic effect of CoPP pretreatment was noticed in HaCaT cultured in either glucose concentration. Additionally, CoPP pretreatment was shown to promote tight junction formation in HaCaT suffering from LPS-induced damage. Conclusions CoPP enhances cell migratory capacity under hyperglycemic conditions, and protects cells from oxidative and LPS-induced cellular damage in HG media containing either H2O2 or LPS. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00499-0.
Collapse
Affiliation(s)
- Peng-Hsiang Fang
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Ying-Ying Lai
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chih-Ling Chen
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Hsin-Yu Wang
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Ya-Ning Chang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Yung-Chang Lin
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Cheng-Hung Lai
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan.
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan.
| |
Collapse
|
4
|
Cyathus striatus Extract Induces Apoptosis in Human Pancreatic Cancer Cells and Inhibits Xenograft Tumor Growth In Vivo. Cancers (Basel) 2021; 13:cancers13092017. [PMID: 33922003 PMCID: PMC8122434 DOI: 10.3390/cancers13092017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The main aim of the present study is to test the effect of Cyathus striatus extract on the cell growth of human pancreatic cancer cells in vitro and in vivo. In addition, the effect of the extract on the gene expression was detected. The results indicated that Cyathus striatus extract significantly inhibited the cell viability and induced apoptosis. The treatment of xenograft mice harboring human pancreatic cancer cells significantly inhibited tumor growth through the induction of apoptosis. RNAseq experiments revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. These results may suggest that Cyathus striatus extract may contain pro-apoptotic factors that can be identified and used for the treatment of human cancer. Abstract Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.
Collapse
|
5
|
Mofers A, Selvaraju K, Gubat J, D'Arcy P, Linder S. Identification of proteasome inhibitors using analysis of gene expression profiles. Eur J Pharmacol 2020; 889:173709. [PMID: 33166494 DOI: 10.1016/j.ejphar.2020.173709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
Inhibitors of the 20S proteasome such as bortezomib (Velcade®) and carfilzomib (Kypriolis®) are in clinical use for the treatment of patients with multiple myeloma and mantle cell lymphoma. In an attempt to identify novel inhibitors of the ubiquitin-proteasome system (UPS) we used the connectivity map (CMap) resource, based on alterations of gene expression profiles by perturbagens, and performed COMPARE analyses of drug sensitivity patterns in the NCI60 panel. Cmap analysis identified a large number of small molecules with strong connectivity to proteasome inhibition, including both well characterized inhibitors of the 20S proteasome and molecules previously not described to inhibit the UPS. A number of these compounds have been reported to be cytotoxic to tumor cells and were tested for their ability to decrease processing of proteasome substrates. The antibiotic thiostrepton and the natural products celastrol and curcumin induced strong accumulation of polyubiquitinated proteasome substrates in exposed cells. Other compounds elicited modest increases of proteasome substrates, including the protein phosphatase inhibitor BCI-Cl and the farnesyltransferase inhibitor manumycin A, suggesting that these compounds inhibit proteasome function. Induction of chaperone expression in the absence of proteasome inhibition was observed by a number of compounds, suggesting other effects on the UPS. We conclude that the combination of bioinformatic analyses and cellular assays resulted in the identification of compounds with potential to inhibit the UPS.
Collapse
Affiliation(s)
- Arjan Mofers
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Karthik Selvaraju
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Johannes Gubat
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Padraig D'Arcy
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Stig Linder
- Biomedical and Clinical Sciences, Linköping University, SE-58183, Linköping, Sweden; Department of Oncology-Pathology, Karolinska Institutet, SE-17176, Stockholm, Sweden.
| |
Collapse
|
6
|
Fukutani ER, Ramos PIP, Kasprzykowski JI, Azevedo LG, Rodrigues MMDS, Lima JVDOP, de Araújo Junior HFS, Fukutani KF, de Queiroz ATL. Meta-Analysis of HTLV-1-Infected Patients Identifies CD40LG and GBP2 as Markers of ATLL and HAM/TSP Clinical Status: Two Genes Beat as One. Front Genet 2019; 10:1056. [PMID: 31781157 PMCID: PMC6857459 DOI: 10.3389/fgene.2019.01056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/02/2019] [Indexed: 01/18/2023] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) was the first recognized human retrovirus. Infection can lead to two main symptomatologies: adult T-cell lymphoma/leukemia (ATLL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Each manifestation is associated with distinct characteristics, as ATLL presents as a leukemia-like disease, while HAM/TSP presents as severe inflammation in the central nervous system, leading to paraparesis. Previous studies have identified molecules associated with disease development, e.g., the downregulation of Foxp3 in Treg cells was associated with increased risk of HAM/TSP. In addition, elevated levels of CXCL10, CXCL9, and Neopterin in cerebrospinal fluid also present increased risk. However, these molecules were only associated with specific patient groups or viral strains. Furthermore, the majority of studies did not jointly compare all clinical manifestations, and robust analysis entails the inclusion of both ATLL and HAM/TSP. The low numbers of samples also pose difficulties in conducting gene expression analysis to identify specific molecular relationships. To address these limitations and increase the power of manifestation-specific gene associations, meta-analysis was performed using publicly available gene expression data. The application of supervised learning techniques identified alterations in two genes observed to act in tandem as potential biomarkers: GBP2 was associated with HAM/TSP, and CD40LG with ATLL. Together, both molecules demonstrated high sample-classification accuracy (AUC values: 0.88 and 1.0, respectively). Next, other genes with expression correlated to these genes were identified, and we attempted to relate the enriched pathways identified with the characteristic of each clinical manifestation. The present findings contribute to knowledge surrounding viral progression and suggest a potentially powerful new tool for the molecular classification of HTLV-associated diseases.
Collapse
Affiliation(s)
- Eduardo Rocha Fukutani
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - José Irahe Kasprzykowski
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Lucas Gentil Azevedo
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | | | | | | | - Kiyoshi Ferreira Fukutani
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Fundação José Silveira, Multinational Organization Network Sponsoring Translational and Epidemiological Research, FJS, Salvador, Brazil.,Faculdade de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil
| | | |
Collapse
|
7
|
Gray LT, Puig Lombardi E, Verga D, Nicolas A, Teulade-Fichou MP, Londoño-Vallejo A, Maizels N. G-quadruplexes Sequester Free Heme in Living Cells. Cell Chem Biol 2019; 26:1681-1691.e5. [PMID: 31668518 DOI: 10.1016/j.chembiol.2019.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
Heme is an essential cofactor for many enzymes, but free heme is toxic and its levels are tightly regulated. G-quadruplexes bind heme avidly in vitro, raising the possibility that they may sequester heme in vivo. If so, then treatment that displaces heme from quadruplexes is predicted to induce expression of genes involved in iron and heme homeostasis. Here we show that PhenDC3, a G-quadruplex ligand structurally unrelated to heme, displaces quadruplex-bound heme in vitro and alters transcription in cultured human cells, upregulating genes that support heme degradation and iron homeostasis, and most strikingly causing a 30-fold induction of heme oxidase 1, the key enzyme in heme degradation. We propose that G-quadruplexes sequester heme to protect cells from the pathophysiological consequences of free heme.
Collapse
Affiliation(s)
- Lucas T Gray
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Emilia Puig Lombardi
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris 75005, France
| | - Daniela Verga
- Institut Curie, Centre de Recherche, CNRS-UMR9187, INSERM-U1196, PSL Research University, Sorbonne Universités, Orsay 91405, France; CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris-Saclay, Orsay 91405, France
| | - Alain Nicolas
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris 75005, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, Centre de Recherche, CNRS-UMR9187, INSERM-U1196, PSL Research University, Sorbonne Universités, Orsay 91405, France; CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris-Saclay, Orsay 91405, France
| | - Arturo Londoño-Vallejo
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris 75005, France
| | - Nancy Maizels
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Zhang X, Selvaraju K, Saei AA, D'Arcy P, Zubarev RA, Arnér ES, Linder S. Repurposing of auranofin: Thioredoxin reductase remains a primary target of the drug. Biochimie 2019; 162:46-54. [PMID: 30946948 DOI: 10.1016/j.biochi.2019.03.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Auranofin is a gold (I)-containing compound used for the treatment of rheumatic arthritis. Auranofin has anticancer activity in animal models and is approved for clinical trials for lung and ovarian carcinomas. Both the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase (TrxR) are well documented targets of auranofin. Auranofin was recently reported to also inhibit proteasome activity at the level of the proteasome-associated deubiquitinases (DUBs) UCHL5 and USP14. We here set out to re-examine the molecular mechanism underlying auranofin cytotoxicity towards cultured cancer cells. The effects of auranofin on the proteasome were examined in cells and in vitro, effects on DUB activity were assessed using different substrates. The cellular response to auranofin was compared to that of the 20S proteasome inhibitor bortezomib and the 19S DUB inhibitor b-AP15 using proteomics. Auranofin was found to inhibit mitochondrial activity and to an induce oxidative stress response at IC50 doses. At 2-3-fold higher doses, auranofin inhibits proteasome processing in cells. At such supra-pharmacological concentrations USP14 activity was inhibited. Analysis of protein expression profiles in drug-exposed tumor cells showed that auranofin induces a response distinct from that of the 20S proteasome inhibitor bortezomib and the DUB inhibitor b-AP15, both of which induced similar responses. Our results support the notion that the primary mechanism of action of auranofin is TrxR inhibition and suggest that proteasome DUB inhibition is an off-target effect. Whether proteasome inhibition will contribute to the antineoplastic effect of auranofin in treated patients is unclear but remains a possibility.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Karthik Selvaraju
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Padraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Elias Sj Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|
9
|
Amigo-Jiménez I, Bailón E, Aguilera-Montilla N, García-Marco JA, García-Pardo A. Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget 2018; 7:83359-83377. [PMID: 27829220 PMCID: PMC5347775 DOI: 10.18632/oncotarget.13091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
CLL remains an incurable disease in spite of the many new compounds being tested. Arsenic trioxide (ATO) induces apoptosis in all CLL cell types and could constitute an efficient therapy. To further explore this, we have studied the gene expression profile induced by ATO in CLL cells. ATO modulated many genes, largely involved in oxidative stress, being HMOX1 the most upregulated gene, also induced at the protein level. ATO also increased MMP-9, as we previously observed, both at the mRNA and protein level. Using specific inhibitors, qPCR analyses, and gene silencing approaches we demonstrate that upregulation of MMP-9 by ATO involved activation of the p38 MAPK/AP-1 signaling pathway. Moreover, gene silencing HMOX1 or inhibiting HMOX1 activity enhanced p38 MAPK phosphorylation and c-jun expression/activation, resulting in transcriptional upregulation of MMP-9. Overexpression of HMOX1 or enhancement of its activity, had the opposite effect. Cell viability analyses upon modulation of HMOX1 expression or activity demonstrated that HMOX1 had a pro-apoptotic role and enhanced the cytotoxic effect of ATO in CLL cells. We have therefore identified a new mechanism in which HMOX1 plays a central role in the response of CLL cells to ATO and in the regulation of the anti-apoptotic protein MMP-9. Thus, HMOX1 arises as a new therapeutic target in CLL and the combination of HMOX1 modulators with ATO may constitute an efficient therapeutic strategy in CLL.
Collapse
Affiliation(s)
- Irene Amigo-Jiménez
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elvira Bailón
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Aguilera-Montilla
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José A García-Marco
- Molecular Cytogenetics Unit, Hematology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Angeles García-Pardo
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
10
|
Acute lymphoblastic leukemia cells are sensitive to disturbances in protein homeostasis induced by proteasome deubiquitinase inhibition. Oncotarget 2017; 8:21115-21127. [PMID: 28423502 PMCID: PMC5400570 DOI: 10.18632/oncotarget.15501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
The non-genotoxic nature of proteasome inhibition makes it an attractive therapeutic option for the treatment of pediatric malignancies. We recently described the small molecule VLX1570 as an inhibitor of proteasome deubiquitinase (DUB) activity that induces proteotoxic stress and apoptosis in cancer cells. Here we show that acute lymphoblastic leukemia (ALL) cells are highly sensitive to treatment with VLX1570, resulting in the accumulation of polyubiquitinated proteasome substrates and loss of cell viability. VLX1570 treatment increased the levels of a number of proteins, including the chaperone HSP70B', the oxidative stress marker heme oxygenase-1 (HO-1) and the cell cycle regulator p21Cip1. Unexpectedly, polybiquitin accumulation was found to be uncoupled from ER stress in ALL cells. Thus, increased phosphorylation of eIF2α occurred only at supra-pharmacological VLX1570 concentrations and did not correlate with polybiquitin accumulation. Total cellular protein synthesis was found to decrease in the absence of eIF2α phosphorylation. Furthermore, ISRIB (Integrated Stress Response inhibitor) did not overcome the inhibition of protein synthesis. We finally show that VLX1570 can be combined with L-asparaginase for additive or synergistic antiproliferative effects on ALL cells. We conclude that ALL cells are highly sensitive to the proteasome DUB inhibitor VLX1570 suggesting a novel therapeutic option for this disease.
Collapse
|
11
|
The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep 2016; 6:26979. [PMID: 27264969 PMCID: PMC4893612 DOI: 10.1038/srep26979] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/26/2016] [Indexed: 12/29/2022] Open
Abstract
Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity.
Collapse
|
12
|
Wang X, D'Arcy P, Caulfield TR, Paulus A, Chitta K, Mohanty C, Gullbo J, Chanan-Khan A, Linder S. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des 2015; 86:1036-48. [PMID: 25854145 DOI: 10.1111/cbdd.12571] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure-activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden
| | - Thomas R Caulfield
- Department of Molecular Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Kasyapa Chitta
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Chitralekha Mohanty
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, S-171 76, Stockholm, Sweden
| | - Joachim Gullbo
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, S-75185, Uppsala, Sweden
| | - Asher Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden.,Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, S-171 76, Stockholm, Sweden
| |
Collapse
|
13
|
Cheng RYS, Basudhar D, Ridnour LA, Heinecke JL, Kesarwala AH, Glynn S, Switzer CH, Ambs S, Miranda KM, Wink DA. Gene expression profiles of NO- and HNO-donor treated breast cancer cells: insights into tumor response and resistance pathways. Nitric Oxide 2014; 43:17-28. [PMID: 25153034 DOI: 10.1016/j.niox.2014.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is not only flux-dependent, which is higher in mouse vs human cells, but also varies based on spatial and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors have been utilized to mimic NO flux conditions and to investigate the effects of varied NO concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been developed as potential therapeutics, including as tumor modulators. One of the challenges is to determine differences in biomarker expression from extracellular vs intracellular generation of NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO andtheir intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of the gene expression profiles demonstrated that several genes were uniquely expressed with respect to NO or HNO, such as miR-21, HSP70, cystathionine γ-lyase and IL24. These findings provide insight into targets and pathways that could be therapeutically exploited by the redox related species NO and HNO.
Collapse
Affiliation(s)
- Robert Y S Cheng
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Debashree Basudhar
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Julie L Heinecke
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Aparna H Kesarwala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Christopher H Switzer
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Katrina M Miranda
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Wang X, Stafford W, Mazurkiewicz M, Fryknäs M, Brjnic S, Zhang X, Gullbo J, Larsson R, Arnér ESJ, D'Arcy P, Linder S. The 19S Deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death. Mol Pharmacol 2014; 85:932-45. [PMID: 24714215 DOI: 10.1124/mol.113.091322] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
b-AP15 [(3E,5E)-3,5-bis[(4-nitrophenyl)methylidene]-1-(prop-2-enoyl)piperidin-4-one] is a small molecule inhibitor of the ubiquitin specific peptidase (USP) 14/ubiquitin carboxyl-terminal hydrolase (UCH) L5 deubiquitinases of the 19S proteasome that shows antitumor activity in a number of tumor models, including multiple myeloma. b-AP15 contains an α,β-unsaturated carbonyl unit that is likely to react with intracellular nucleophiles such as cysteine thiolates by Michael addition. We found that binding of b-AP15 to USP14 is partially reversible, and that inhibition of proteasome function is reversible in cells. Despite reversible binding, tumor cells are rapidly committed to apoptosis/cell death after exposure to b-AP15. We show that b-AP15 is rapidly taken up from the medium and enriched in cells. Enrichment provides an explanation of the stronger potency of the compound in cellular assays compared with in vitro biochemical assays. Cellular uptake was impaired by 30-minute pretreatment of cells with low concentrations of N-ethylmaleimide (10 µM), suggesting that enrichment was thiol dependent. We report that in addition to inhibition of deubiquitinases, b-AP15 inhibits the selenoprotein thioredoxin reductase (TrxR). Whereas proteasome inhibition was closely associated with cell death induction, inhibition of TrxR was not. TrxR inhibition is, however, likely to contribute to triggering of oxidative stress observed with b-AP15. Furthermore, we present structure-activity, in vivo pharmacokinetic, and hepatocyte metabolism data for b-AP15. We conclude that the strong enrichment of b-AP15 in cells and a rapid commitment to apoptosis/cell death are factors that likely contribute to the strong antitumor activity of this compound.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology and Pathology, Cancer Center Karolinska (X.W., M.M., S.B., X.Z., P.D., S.L.), and Division of Biochemistry, Department of Medical Biochemistry and Biophysics (W.S., E.S.J.A.), Karolinska Institute, Stockholm, Sweden; and Division of Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden (M.F., J.G., R.L., S.L.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ozdemir T, Nar R, Kilinc V, Alacam H, Salis O, Duzgun A, Gulten S, Bedir A. Ouabain targets the unfolded protein response for selective killing of HepG2 cells during glucose deprivation. Cancer Biother Radiopharm 2012; 27:457-63. [PMID: 22757644 DOI: 10.1089/cbr.2011.1138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ouabain is a cardiotonic steroid and specific inhibitor of the Na(+)/K(+)-ATPase. The relationship between ouabain treatment and the unfolded protein response (UPR) in cells is not precisely understood. Therefore, we studied the possible effects of ouabain on proliferation, apoptosis, and the UPR. HepG2 cells were cultured overnight and then treated with various concentrations of ouabain (0.75 to 750 nM) in the absence or presence of 10 mM 2-deoxyglucose (2-DG) for 48 hours. We also used real-time polymerase chain reaction to obtain quantitative measurements of expression levels of Grp78, Grp94, CHOP, MTJ-1, HKII, MDR-1, MRP-1, HO-1, and Par-4. Cell number, viability, and proliferation of HepG2 cells were monitored with a real-time cell analyzer system (xCELLigence). We show that ouabain modulates the UPR transcription program and induces cell death in glucose-deprived tumor cells. Ouabain at all concentrations showed no cytotoxicity whereas all concentrations were very effective under 2-DG stress conditions. Our findings show that disruption of the UPR during glucose deprivation could be an attractive approach for selective cancer cell killing and could provide a chemical basis for developing UPR-targeting drugs against solid tumors. Ouabain use as an adjunct to conventional cancer therapy also warrants vigorous investigation.
Collapse
|
16
|
Dummer R, Goldinger SM, Cozzio A, French LE, Karpova MB. Cutaneous Lymphomas: Molecular Pathways Leading to New Drugs. J Invest Dermatol 2012; 132:517-25. [DOI: 10.1038/jid.2011.370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci U S A 2010; 107:13069-74. [PMID: 20615981 DOI: 10.1073/pnas.1002985107] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B-cell lymphoma most commonly diagnosed in HIV-positive patients and universally associated with Kaposi's sarcoma-associated herpesvirus (KSHV). Chemotherapy treatment of PEL yields only short-term remissions in the vast majority of patients, but efforts to develop superior therapeutic approaches have been impeded by lack of animal models that accurately mimic human disease. To address this issue, we developed a direct xenograft model, UM-PEL-1, by transferring freshly isolated human PEL cells into the peritoneal cavities of NOD/SCID mice without in vitro cell growth to avoid the changes in KSHV gene expression evident in cultured cells. We used this model to show that bortezomib induces PEL remission and extends overall survival of mice bearing lymphomatous effusions. The proapoptotic effects of bortezomib are not mediated by inhibition of the prosurvival NF-kappaB pathway or by induction of a terminal unfolded protein response. Transcriptome analysis by genomic arrays revealed that bortezomib down-regulated cell-cycle progression, DNA replication, and Myc-target genes. Furthermore, we demonstrate that in vivo treatment with either bortezomib or doxorubicin induces KSHV lytic reactivation. These reactivations were temporally distinct, and this difference may help elucidate the therapeutic window for use of antivirals concurrently with chemotherapy. Our findings show that this direct xenograft model can be used for testing novel PEL therapeutic strategies and also can provide a rational basis for evaluation of bortezomib in clinical trials.
Collapse
|
18
|
Erter J, Alinari L, Darabi K, Gurcan M, Garzon R, Marcucci G, Bechtel MA, Wong H, Porcu P. New targets of therapy in T-cell lymphomas. Curr Drug Targets 2010; 11:482-93. [PMID: 20196721 DOI: 10.2174/138945010790980376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 10/09/2009] [Indexed: 12/23/2022]
Abstract
T-cell lymphomas (TCL) are characterized by poor response to chemotherapy and generally poor outcome. While molecular profiling has identified distinct biological subsets and therapeutic targets in B-cell lymphomas, the molecular characterization of TCL has been slower. Surface markers expressed on malignant T-cells, such as CD2, CD3, CD4, CD25, and CD52 were the first TCL-specific therapeutic targets to be discovered. However, the presence of these receptors on normal T-cells means that monoclonal antibody (mAb)- or immunotoxin (IT)-based therapy in TCL inevitably results in variable degrees of immunosuppression. Thus, although some mAbs/IT have significant activity in selected subsets of TCL, more specific agents that target signaling pathways preferentially activated in malignant T-cells are needed. One such novel class of agents is represented by the histone deacetylase (HDAC) inhibitors. These molecules selectively induce apoptosis in a variety of transformed cells, including malignant T-cells, both in vitro and in vivo. Several HDAC inhibitors have been studied in TCL with promising results, and have recently been approved for clinical use. Immunomodulatory drugs, such as interferons and Toll Receptor (TLR) agonists have significant clinical activity in TCL, and are particularly important in the treatment of primary cutaneous subtypes (CTCL). Although most classical cytotoxic drugs have limited efficacy against TCL, agents that inhibit purine and pyrimidine metabolism, known as nucleoside analogues, and novel antifolate drugs, such as pralatrexate, are highly active in TCL. With improved molecular profiling of TCL novel pharmacological agents with activity in TCL are now being discovered at an increasingly rapid pace. Clinical trials are in progress and these agents are being integrated in combination therapies for TCL, both in the relapsed/refractory setting as well as front line.
Collapse
Affiliation(s)
- Jack Erter
- Division of Hematology - Oncology, The Ohio State University, Comprehensive Cancer Center, B-320 Starling Loving Hall, 320 West 10th Avenue, Columbus, OH, 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kurashina R, Ohyashiki JH, Kobayashi C, Hamamura R, Zhang Y, Hirano T, Ohyashiki K. Anti-proliferative activity of heat shock protein (Hsp) 90 inhibitors via β-catenin/TCF7L2 pathway in adult T cell leukemia cells. Cancer Lett 2009; 284:62-70. [DOI: 10.1016/j.canlet.2009.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/12/2009] [Accepted: 04/09/2009] [Indexed: 01/04/2023]
|
20
|
Bhalla S, Balasubramanian S, David K, Sirisawad M, Buggy J, Mauro L, Prachand S, Miller R, Gordon LI, Evens AM. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res 2009; 15:3354-65. [PMID: 19417023 DOI: 10.1158/1078-0432.ccr-08-2365] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE We investigated the cytotoxicity and mechanisms of cell death of the broad-spectrum histone deacetylase (HDAC) inhibitor PCI-24781, alone and combined with bortezomib in Hodgkin lymphoma and non-Hodgkin lymphoma cell lines and primary lymphoproliferative (CLL/SLL) cells. EXPERIMENTAL DESIGN Apoptosis, mitochondrial membrane potential, cell cycle analysis, and reactive oxygen species (ROS) were measured by flow cytometry, whereas caspase activation was determined by Western blot. Nuclear factor kappaB (NF-kappaB)-related mRNAs were quantified by reverse transcription-PCR, NF-kappaB-related proteins by Western blotting, and NF-kappaB DNA-binding activity by electromobility shift assay. Finally, gene expression profiling was analyzed. RESULTS PCI-24781 induced concentration-dependent apoptosis that was associated with prominent G(0)/G(1) arrest, decreased S-phase, increased p21 protein, and increased ROS in Hodgkin lymphoma and non-Hodgkin lymphoma cell lines. Dose-dependent apoptosis with PCI-24781 was also seen among primary CLL/SLL cells. PCI-24781-induced apoptosis was shown to be ROS- and caspase-dependent. Combined PCI-24781/bortezomib treatment resulted in strong synergistic apoptosis in all non-Hodgkin lymphoma lines (combination indices, 0.19-0.6) and was additive in Hodgkin lymphoma and primary CLL/SLL cells. Further, PCI-24781/bortezomib resulted in increased caspase cleavage, mitochondrial depolarization, and histone acetylation compared with either agent alone. Gene expression profiling showed that PCI-24781 alone significantly down-regulated several antioxidant genes, proteasome components, and NF-kappaB pathway genes, effects that were enhanced further with bortezomib. Reverse transcription-PCR confirmed down-regulation of NF-kappaB1 (p105), c-Myc, and IkappaB-kinase subunits, where NF-kappaB DNA binding activity was decreased. CONCLUSION We show that PCI-24781 results in increased ROS and NF-kappaB inhibition, leading to caspase-dependent apoptosis. We also show that bortezomib is synergistic with PCI-24781. This combination or PCI-24781 alone has potential therapeutic value in lymphoma.
Collapse
Affiliation(s)
- Savita Bhalla
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine and the Robert H Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Heme oxygenase-1 (HO-1), the rate-limiting enzyme of heme degradation and antioxidant defense protein, is induced in the lungs of animals exposed to hyperoxia. However, high levels of HO-1 expression may be deleterious, thus necessitating tight regulation. Previous reports show maturational differences in rat HO-1 regulation in hyperoxia, as newborns do not up-regulate HO-1mRNA compared with adults. To better understand the differential response of lung HO-1 to hyperoxia, we exposed newborn and adult mice to >95% oxygen. The newborn lungs had reduced HO-1 mRNA induction compared with adults and newborn transgenic mice over-expressing luciferase driven by the 15 kb HO-1 promoter (HO-1/Luc Tg) had less increased light emission in hyperoxia compared with adults. Compared with adults, levels of the repressor of HO-1 transcription, Bach1, were higher in the neonatal lung as was nuclear protein-DNA binding to the antioxidant response element (ARE) from HO-1. Furthermore, at baseline and in hyperoxia, chromatin immunoprecipitation (ChIP) revealed increased Bach1 binding to the HO-1 distal enhancers (DEs) in the neonates compared with adults. These data suggest that elevated levels of Bach1 may help to limit HO-1 induction in the newborn at baseline and in response to oxidative stress.
Collapse
|
22
|
Ri M, Iida S, Ishida T, Ito A, Yano H, Inagaki A, Ding J, Kusumoto S, Komatsu H, Utsunomiya A, Ueda R. Bortezomib-induced apoptosis in mature T-cell lymphoma cells partially depends on upregulation of Noxa and functional repression of Mcl-1. Cancer Sci 2009; 100:341-8. [PMID: 19068089 PMCID: PMC11158742 DOI: 10.1111/j.1349-7006.2008.01038.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bortezomib, a proteasome inhibitor that was originally developed as an inhibitor of nuclear factor-κB pathways, is currently used for the treatment of multiple myeloma (MM) and mantle cell lymphoma (MCL). The mechanisms of action of this antitumor agent have been studied by several investigators. Here, we explore the underlying mechanisms of bortezomib-induced apoptosis in cutaneous T-cell lymphoma (CTCL) and adult T-cell leukemia/lymphoma (ATLL) at the level of mitochondrial membrane injury. In all cell lines including (KMS-12-PE [MM], HUT78 [CTCL], ATN1 [ATLL], and MT4 [ATLL]), antiapoptotic factors such as c-Flip and XIAP were downregulated after exposure to bortezomib, probably via inhibition of nuclear factor-κB signaling. In addition, among the members of the BH3-only family, upregulation of Noxa was consistently seen at both the transcriptional and protein levels in a p53-independent manner after exposure to bortezomib. Repression of Noxa by small interfering RNA partially rescued CTCL and ATLL cells from bortezomib-induced apoptosis. Immunoprecipitation assays indicated time-dependent binding of Noxa and Mcl-1 in all cell types, suggesting that functional repression of Mcl-1 led to the loss of mitochondrial outer membrane potential. Similar results were also obtained in primary tumor cells from patients with ATLL. Taken together, we conclude that bortezomib-induced apoptosis in ATLL and CTCL cells at least partly depends on the upregulation of Noxa and functional repression of Mcl-1, as is also the case in MM and malignant melanoma.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Boronic Acids/pharmacology
- Bortezomib
- Cell Proliferation/drug effects
- Humans
- Immunoprecipitation
- Leukemia-Lymphoma, Adult T-Cell
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Membrane Potential, Mitochondrial/drug effects
- Myeloid Cell Leukemia Sequence 1 Protein
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyrazines/pharmacology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Masaki Ri
- Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ohyashiki JH, Hamamura R, Kobayashi C, Zhang Y, Ohyashiki K. A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells. Adv Appl Bioinform Chem 2008; 1:85-98. [PMID: 21918608 PMCID: PMC3169936 DOI: 10.2147/aabc.s4133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL) patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene(®) identified a secreted protein acidic and rich in cysteine (SPARC) gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects.
Collapse
Affiliation(s)
- Junko H Ohyashiki
- Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan
| | - Ryoko Hamamura
- First Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Kobayashi
- First Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yu Zhang
- First Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- First Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Taylor JM, Nicot C. HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis 2008; 13:733-47. [PMID: 18421579 DOI: 10.1007/s10495-008-0208-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A universal cellular defense mechanism against viral invasion is the elimination of infected cells through apoptotic cell death. To counteract host defenses many viruses have evolved complex apoptosis evasion strategies. The oncogenic human retrovirus HTLV-1 is the etiological agent of adult-T-cell leukemia/lymphoma (ATLL) and the neurodegenerative disease known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The poor prognosis in HTLV-1-induced ATLL is linked to the resistance of neoplastic T cells against conventional therapies and the immuno-compromised state of patients. Nevertheless, several studies have shown that the apoptotic pathway is largely intact and can be reactivated in ATLL tumor cells to induce specific killing. A better understanding of the molecular mechanisms employed by HTLV-1 to counteract cellular death pathways remains an important challenge for future therapies and the treatment of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- John M Taylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kansas Medical Center, 3025 Wahl Hall West, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | |
Collapse
|
25
|
Ishitsuka K, Tamura K. Treatment of adult T-cell leukemia/lymphoma: past, present, and future. Eur J Haematol 2007; 80:185-96. [PMID: 18081707 DOI: 10.1111/j.1600-0609.2007.01016.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell malignancy caused by human T-cell lymphotrophic virus type I. Clinical manifestations of ATLL range from smoldering to chronic, lymphoma and acute. Patients with acute and lymphoma type ATLL require therapeutic intervention. Conventional chemotherapeutic regimens used against other malignant lymphoma have been administered to ATLL patients, but the therapeutic outcomes of acute and lymphoma type ATLL remain very poor. Promising results of allogeneic stem cell transplantation (SCT) for ATLL patients have recently been reported and the treatment outcome might be improved for some ATLL patients. Besides conventional chemotherapy and SCT, interferon, zidovudine, arsenic trioxide, targeted therapy against surface molecule on ATLL cells, retinoid derivatives, and bortezomib have been administered to ATLL patients in pilot or phase I/II studies. Further studies are required to confirm the clinical benefits of these novel therapeutics. This article reviews the current status and future directions of ATLL treatment.
Collapse
Affiliation(s)
- Kenji Ishitsuka
- Internal Medicine, Division of Hematology and Oncology, Fukuoka University, Fukuoka, Japan.
| | | |
Collapse
|