1
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
2
|
Jacobson BA, Ahmad Z, Chen S, Waldusky G, Dillenburg M, Stoian E, Cambron DA, Patel AJ, Patel MR, Wagner CR, Kratzke RA. 4Ei-10 interdiction of oncogenic cap-mediated translation as therapy for non-small cell lung cancer. Invest New Drugs 2021; 39:636-643. [PMID: 33230623 DOI: 10.1007/s10637-020-01036-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
In order to suppress 5' cap-mediated translation a highly available inhibitor of the interaction between the 5' mRNA cap and the eIF4E complex has been developed. 4Ei-10 is a member of the class of ProTide compounds and has elevated membrane permeability and is a strong active chemical antagonist for eIF4E. Once taken up by cells it is converted by anchimeric activation of the lipophilic 2-(methylthio) ethyl protecting group and after that Hint1 P-N bond cleavage to N7-(p-chlorophenoxyethyl) guanosine 5'-monophosphate (7-Cl-Ph-Ethyl-GMP). Using this powerful interaction, it has been demonstrated that 4Ei-10 inhibits non-small cell lung cancer (NSCLC) cell growth. In addition, treatment of NSCLC cells with 4Ei-10 results in suppression of translation and diminished expression of a cohort of cellular proteins important to maintaining the malignant phenotype and resisting apoptosis such as Bcl-2, survivin, and ornithine decarboxylase (ODC). Finally, as a result of targeting the translation of anti-apoptotic proteins, NSCLC cells are synergized to be more sensitive to the existing anti-neoplastic treatment gemcitabine currently used in NSCLC therapy.
Collapse
Affiliation(s)
- Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Zeeshan Ahmad
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Anil J Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Malignant pleural mesothelioma co-opts BCL-X L and autophagy to escape apoptosis. Cell Death Dis 2021; 12:406. [PMID: 33859162 PMCID: PMC8050302 DOI: 10.1038/s41419-021-03668-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Escape from programmed cell death is a hallmark of cancer. In this study, we investigated the anti-apoptotic mechanisms and explored the therapeutic potential of BCL-2 homology domain-3 (BH3) mimetics in malignant pleural mesothelioma (MPM), a lethal thoracic malignancy with an extreme dearth of treatment options. By implementing integrated analysis of functional genomic data of MPM cells and quantitative proteomics of patients’ tumors, we identified BCL-XL as an anti-apoptotic driver that is overexpressed and confers an oncogenic dependency in MPM. MPM cells harboring genetic alterations that inactivate the NF2/LATS1/2 signaling are associated with increased sensitivity to A-1155463, a BCL-XL-selective BH3 mimetic. Importantly, BCL-XL inhibition elicits protective autophagy, and concomitant blockade of BCL-XL and autophagic machinery with A-1155463 and hydroxychloroquine (HCQ), the US Food and Drug Administration (FDA)-approved autophagy inhibitor, synergistically enhances anti-MPM effects in vitro and in vivo. Together, our work delineates the molecular basis underlying resistance to apoptosis and uncovers an evasive mechanism that limits response to BH3 mimetics in MPM, suggesting a novel strategy to target this aggressive disease.
Collapse
|
4
|
Xu D, Yang H, Schmid RA, Peng RW. Therapeutic Landscape of Malignant Pleural Mesothelioma: Collateral Vulnerabilities and Evolutionary Dependencies in the Spotlight. Front Oncol 2020; 10:579464. [PMID: 33072611 PMCID: PMC7538645 DOI: 10.3389/fonc.2020.579464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven by pharmacologically intractable tumor suppressor proteins. A significant but largely unmet challenge in the field is the translation of genetic information on alterations in tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion that abnormal tumor genome subverts physiological cellular processes, which creates collateral vulnerabilities contextually related to specific genetic alterations, offers a promising strategy to target TSG-driven MPM. Moreover, emerging evidence has increasingly appreciated the therapeutic potential of genetic and pharmacological dependencies acquired en route to cancer development and drug resistance. Here, we review the most recent progress on vulnerabilities co-selected by functional loss of major TSGs and dependencies evolving out of cancer development and resistance to cisplatin based chemotherapy, the only first-line regimen approved by the US Food and Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate therapeutic landscape and may promote precision oncology for MPM.
Collapse
Affiliation(s)
- Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ahmad Z, Jacobson BA, McDonald MW, Vattendahl Vidal N, Vattendahl Vidal G, Chen S, Dillenburg M, Okon AM, Patel MR, Wagner CR, Kratzke RA. Repression of oncogenic cap-mediated translation by 4Ei-10 diminishes proliferation, enhances chemosensitivity and alters expression of malignancy-related proteins in mesothelioma. Cancer Chemother Pharmacol 2020; 85:425-432. [PMID: 31974652 DOI: 10.1007/s00280-020-04029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Activated cap-dependent translation promotes cancer by stimulating translation of mRNAs encoding malignancy-promoting proteins. The nucleoside monophosphate Protide, 4Ei-10, undergoes intracellular uptake and conversion by Hint1 to form 7-Cl-Ph-Ethyl-GMP. 7-Cl-Ph-Ethyl-GMP is an analog of cap and inhibits protein translation by binding and sequestering eIF4E thus blocking eIF4E from binding to the mRNA cap. The effects of inhibiting translation initiation by disruption of the eIF4F complex with 4Ei-10 were examined in malignant mesothelioma (MM). In a cell-free assay system, formation of the eIF4F complex was disabled in response to exposure to 4Ei-10. Treatment of MM with 4Ei-10 resulted in decreased cell proliferation, increased sensitivity to pemetrexed and altered expression of malignancy-related proteins. In light of these findings, suppression of translation initiation by small molecule inhibitors like 4Ei-10 alone or in combination with pemetrexed represents an encouraging strategy meriting further evaluation in the treatment of MM.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | - Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Aniekan M Okon
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Hinz TK, Heasley LE. Translating mesothelioma molecular genomics and dependencies into precision oncology-based therapies. Semin Cancer Biol 2019; 61:11-22. [PMID: 31546009 DOI: 10.1016/j.semcancer.2019.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare, yet lethal asbestos-induced cancer and despite marked efforts to reduce occupational exposure, the incidence has not yet significantly declined. Since 2003, combined treatment with a platinum-based agent and pemetrexed has been the first-line therapy and no effective or approved second-line treatments have emerged. The seemingly slow advance in developing new MPM treatments does not appear to be related to a low level of clinical and pre-clinical research activity. Rather, we suggest that a key hurdle in successfully translating basic discovery into novel MPM therapeutics is the underlying assumption that as a rare cancer, it will also be molecularly and genetically homogeneous. In fact, lung adenocarcinoma and melanoma only benefitted from precision oncology upon full appreciation of the high degree of molecular heterogeneity inherent in these cancers, especially regarding the diversity of oncogenic drivers. Herein, we consider the recent explosion of molecular and genetic information that has become available regarding MPM and suggest ways in which the unfolding landscape may guide identification of novel therapeutic vulnerabilities within subsets of MPM that can be targeted in a manner consistent with the tenets of precision oncology.
Collapse
Affiliation(s)
- Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
7
|
De A, Jacobson BA, Peterson MS, Stelzner ME, Jay-Dixon J, Kratzke MG, Patel MR, Bitterman PB, Kratzke RA. Inhibition of oncogenic cap-dependent translation by 4EGI-1 reduces growth, enhances chemosensitivity and alters genome-wide translation in non-small cell lung cancer. Cancer Gene Ther 2018; 26:157-165. [DOI: 10.1038/s41417-018-0058-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/22/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022]
|
8
|
De A, Jacobson BA, Peterson MS, Jay-Dixon J, Kratzke MG, Sadiq AA, Patel MR, Kratzke RA. 4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma. Invest New Drugs 2017; 36:217-229. [PMID: 29116477 DOI: 10.1007/s10637-017-0535-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022]
Abstract
Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E-binding protein 1 (4E-BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.
Collapse
Affiliation(s)
- Arpita De
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mark S Peterson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Joe Jay-Dixon
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marian G Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ahad A Sadiq
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma. Oncotarget 2017; 8:63096-63109. [PMID: 28968974 PMCID: PMC5609906 DOI: 10.18632/oncotarget.18656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant mesothelioma has a poor prognosis for which there remains an urgent need for successful treatment approaches. Infection with the Edmonston vaccine strain (MV-Edm) derivative of measles virus results in lysis of cancer cells and has been tested in clinical trials for numerous tumor types including mesothelioma. Many factors play a role in MV-Edm tumor cell selectivity and cytopathic activity while also sparing non-cancerous cells. The MV-Edm receptor CD46 (cluster of differentiation 46) was demonstrated to be significantly higher in mesothelioma cells than in control cells. In contrast, mesothelioma cells are not reliant upon the alternative MV-Edm receptor nectin-4 for entry. MV-Edm treatment of mesothelioma reduced cell viability and also invoked apoptotic cell death. Forced expression of eIF4E or translation stimulation following IGF-I (insulin-like growth factor 1) exposure strengthened the potency of measles virus oncolytic activity. It was also shown that repression of cap-dependent translation by treatment with agents [4EASO, 4EGI-1] that suppress host cell translation or by forcing cells to produce an activated repressor protein diminishes the strength of oncolytic viral efficacy.
Collapse
|
10
|
Kratzke RA. Targeting eukaryotic protein translation in mesothelioma. Transl Lung Cancer Res 2017; 6:343-349. [PMID: 28713679 PMCID: PMC5504115 DOI: 10.21037/tlcr.2017.06.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 12/29/2022]
Abstract
The default mechanism for protein translation in eukaryotes involves activation of the eIF4 complex at the 5' end of mRNA. This activity is upregulated in cancers, resulting in the expression of a variety of proteins necessary for the development and maintenance of the neoplastic state. Not surprisingly, mesothelioma demonstrates this same reliance on activation of 5' cap mediated translation. Efforts are ongoing to target and exploit our knowledge of this key molecular switch for cancer therapy. Agents targeting the critical eIF4E cap binding protein, disruption of the eIF4 complex, and exploitation for oncolytic virotherapy are some of the important areas of current research in mesothelioma protein translational research.
Collapse
Affiliation(s)
- Robert A Kratzke
- Division of Hematology-Oncology Transplant, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Si Shen Wan Regulates Phospholipase Cγ-1 and PI3K/Akt Signal in Colonic Mucosa from Rats with Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:392405. [PMID: 26273312 PMCID: PMC4530235 DOI: 10.1155/2015/392405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
Abstract
The present study explored the feasible pathway of Si Shen Wan (SSW) in inhibiting apoptosis of intestinal epithelial cells (IECs) by observing activation of phospholipase Cγ-1 (PLC-γ1) and PI3K/Akt signal in colonic mucosa from rats with colitis. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in the Sprague-Dawley rats. After SSW was administrated for 7 days after TNBS infusion, western blot showed an increment in levels of PI3K, p-Akt, and IL-23 and a decrement in levels of PLC-γ1 and HSP70 in colonic mucosal injury induced by TNBS. Meanwhile, assessments by ELISA revealed an increment in concentrations of IL-2, IL-6, and IL-17 and a reduction in level of TGF-β after TNBS challenge. Impressively, treatment with SSW for 7 days significantly attenuated the expressions of PI3K and p-Akt and the secretion of IL-2, IL-6, IL-17, and IL-23 and promoted the activation of PLC-γ1, HSP70, and TGF-β. Our previous studies had demonstrated that SSW restored colonic mucosal ulcers by inhibiting apoptosis of IECs. The present study demonstrated that the effect of SSW on inhibiting apoptosis of IECs was realized probably by activation of PLC-γ1 and suppression of PI3K/Akt signal pathway.
Collapse
|
12
|
In vitro study on blocking mTOR signaling pathway in EGFR-TKI resistance NSCLC. ASIAN PAC J TROP MED 2015; 7:394-7. [PMID: 25063068 DOI: 10.1016/s1995-7645(14)60063-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 03/15/2014] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the effect and mechanism of inhibitor everolimus on EGFR-TKI resistance NSCLC. METHODS MTT assay was used to detect proliferation of human non-small cell lung cancer cell line A549. Flow cytometry was used to detect the changes of apoptosis and cycle distribution in each group after 24 h and 48 h. RT-PCR was used to detect the changes of PTEN and 4EBP1 expression levels after 48 h of monotherapy and combination therapy. RESULTS MTT assay showed that everolimus had dose-dependent inhibition against growth of A549 cells. Flow cytometry showed when everolimus could induce apoptosis and induce G0/G1 phase cell cycle arrest, which was time-dependent (P<0.05). RT-PCR showed everolimus could increase PTEN and 4EBP1 expression. CONCLUSIONS mTOR inhibitor everolimus has an inhibitory effect on EGFR-TKI resistant NSCLC, which cannot reverse the resistance effect of EGFR-TKI resistant cell line A549. The relationship between EGFR/AKT signaling pathway and the mTOR signaling pathway and the mechanism in non-small cell lung cancer need further study.
Collapse
|
13
|
Marek LA, Hinz TK, von Mässenhausen A, Olszewski KA, Kleczko EK, Boehm D, Weiser-Evans MC, Nemenoff RA, Hoffmann H, Warth A, Gozgit JM, Perner S, Heasley LE. Nonamplified FGFR1 is a growth driver in malignant pleural mesothelioma. Mol Cancer Res 2014; 12:1460-9. [PMID: 24966347 DOI: 10.1158/1541-7786.mcr-14-0038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Malignant pleural mesothelioma (MPM) is associated with asbestos exposure and is a cancer that has not been significantly affected by small molecule-based targeted therapeutics. Previously, we demonstrated the existence of functional subsets of lung cancer and head and neck squamous cell carcinoma (HNSCC) cell lines in which fibroblast growth factor receptor (FGFR) autocrine signaling functions as a nonmutated growth pathway. In a panel of pleural mesothelioma cell lines, FGFR1 and FGF2 were coexpressed in three of seven cell lines and were significantly associated with sensitivity to the FGFR-active tyrosine kinase inhibitor (TKI), ponatinib, both in vitro and in vivo using orthotopically propagated xenografts. Furthermore, RNAi-mediated silencing confirmed the requirement for FGFR1 in specific mesothelioma cells and sensitivity to the FGF ligand trap, FP-1039, validated the requirement for autocrine FGFs. None of the FGFR1-dependent mesothelioma cells exhibited increased FGFR1 gene copy number, based on a FISH assay, indicating that increased FGFR1 transcript and protein expression were not mediated by gene amplification. Elevated FGFR1 mRNA was detected in a subset of primary MPM clinical specimens and like MPM cells; none harbored increased FGFR1 gene copy number. These results indicate that autocrine signaling through FGFR1 represents a targetable therapeutic pathway in MPM and that biomarkers distinct from increased FGFR1 gene copy number such as FGFR1 mRNA would be required to identify patients with MPM bearing tumors driven by FGFR1 activity. IMPLICATIONS FGFR1 is a viable therapeutic target in a subset of MPMs, but FGFR TKI-responsive tumors will need to be selected by a biomarker distinct from increased FGFR1 gene copy number, possibly FGFR1 mRNA or protein levels.
Collapse
Affiliation(s)
- Lindsay A Marek
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anne von Mässenhausen
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Kyle A Olszewski
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily K Kleczko
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Diana Boehm
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Mary C Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hans Hoffmann
- Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Arne Warth
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sven Perner
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
14
|
Huang J, Tabata S, Kakiuchi S, The Van T, Goto H, Hanibuchi M, Nishioka Y. Identification of pregnancy-associated plasma protein A as a migration-promoting gene in malignant pleural mesothelioma cells: a potential therapeutic target. Oncotarget 2014; 4:1172-84. [PMID: 23896451 PMCID: PMC3787149 DOI: 10.18632/oncotarget.1126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Despite recent advances in treatment, malignant pleural mesothelioma (MPM) remains a deadly disease. Targeted therapy generated broad interests and is highly expected for the treatment of MPM, yet promising preclinical results have not been translated into substantial clinical benefits for the patients. In this study, we tried to identify the genes which play functional roles in cell migration as well as to test whether they can be used as novel targets for molecular targeted therapy for MPM in preclinical model. In our study, pregnancy-associated plasma protein A (PAPPA) was identified as a gene whose expression level is correlated with MPM cell migration by correlation analysis combining MPM cell migration ability and their gene expression profiles. Highly migratory cells were selected from MPM cell lines, MSTO-211H, NCI-H290 and EHMES-1 in vitro and up-regulation of PAPPA in these cells were confirmed. In vitro, PAPPA was demonstrated to stimulate the MPM cell migration via cleavage of insulin-like growth factor-binding protein-4 and subsequent release of IGF-1. Gene silencing of PAPPA in MPM cells led to reduced migration, invasion and proliferation. Furthermore, PAPPA shRNA transfected NCI-H290 when orthotopically inoculated into pleural cavity of severe combined immunodeficiency recipient mice, failed to develop tumors and produce bloody pleural effusion as control shRNA transfected cells did. Our study suggests that PAPPA plays a functional role in promoting MPM cell migration and it might serve as a potential therapeutic target for the treatment of MPM.
Collapse
Affiliation(s)
- Jun Huang
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhou S, Liu L, Li H, Eilers G, Kuang Y, Shi S, Yan Z, Li X, Corson JM, Meng F, Zhou H, Sheng Q, Fletcher JA, Ou WB. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br J Cancer 2014; 110:2479-88. [PMID: 24762959 PMCID: PMC4021537 DOI: 10.1038/bjc.2014.220] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesothelioma is a notoriously chemotherapy-resistant neoplasm, as is evident in the dismal overall survival for patients with those of asbestos-associated disease. We previously demonstrated co-activation of multiple receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), MET, and AXL in mesothelioma cell lines, suggesting that these kinases could serve as novel therapeutic targets. Although clinical trials have not shown activity for EGFR inhibitors in mesothelioma, concurrent inhibition of various activated RTKs has pro-apoptotic and anti-proliferative effects in mesothelioma cell lines. Thus, we hypothesised that a coordinated network of multi-RTK activation contributes to mesothelioma tumorigenesis. METHODS Activation of PI3K/AKT/mTOR, Raf/MAPK, and co-activation of RTKs were evaluated in mesotheliomas. Effects of RTK and downstream inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, apoptosis, activation of signalling intermediates, expression of cell-cycle checkpoints, and cell-cycle alterations. RESULTS We demonstrate activation of the PI3K/AKT/p70S6K and RAF/MEK/MAPK pathways in mesothelioma, but not in non-neoplastic mesothelial cells. The AKT activation, but not MAPK activation, was dependent on coordinated activation of RTKs EGFR, MET, and AXL. In addition, PI3K/AKT/mTOR pathway inhibition recapitulated the anti-proliferative effects of concurrent inhibition of EGFR, MET, and AXL. Dual targeting of PI3K/mTOR by BEZ235 or a combination of RAD001 and AKT knockdown had a greater effect on mesothelioma proliferation and viability than inhibition of individual activated RTKs or downstream signalling intermediates. Inhibition of PI3K/AKT was also associated with MDM2-p53 cell-cycle regulation. CONCLUSIONS These findings show that PI3K/AKT/mTOR is a crucial survival pathway downstream of multiple activated RTKs in mesothelioma, underscoring that PI3K/mTOR is a compelling target for therapeutic intervention.
Collapse
Affiliation(s)
- S Zhou
- 1] Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China [2] Department of Bioengineering, College of Biology and Chemical Engineering, Jiaxing University, Jiaxing, China
| | - L Liu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - H Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - G Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Y Kuang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - S Shi
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Z Yan
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - X Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - J M Corson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - F Meng
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - H Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Q Sheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - J A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - W-B Ou
- 1] Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China [2] Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA [3] Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
16
|
Small-molecule inhibition of oncogenic eukaryotic protein translation in mesothelioma cells. Invest New Drugs 2014; 32:598-603. [DOI: 10.1007/s10637-014-0076-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/18/2014] [Indexed: 02/01/2023]
|
17
|
Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. J Thorac Oncol 2014; 8:1142-7. [PMID: 23883783 DOI: 10.1097/jto.0b013e31829ce963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION For the majority of patients with non-small-cell lung cancer (NSCLC), response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is suboptimal. In models of acquired resistance to EGFR-TKI, activation of Akt phosphorylation is frequently observed. Because Akt activation results in downstream initiation of cap-dependent protein translation, we hypothesized that a strategy of targeting cap-dependent translation in combination with erlotinib might enhance therapy. METHODS NSCLC cells that are wild type for EGFR were assayed for sensitivity to erlotinib. Serum-starved NSCLC cells were assayed for EGFR signaling and downstream pathway activation by immunoblot after stimulation with epidermal growth factor. EGFR signaling and signaling mediators of cap-dependent translation were assayed by immunoblot under serum-replete conditions 24 hours after treatment with erlotinib. Finally, combination treatment with erlotinib and two different cap-dependent translation inhibitors were done to assess the effect on cell viability. RESULTS EGFR signaling is coupled to activation of cap-dependent translation in EGFR wild-type cells. Erlotinib inhibits EGFR phosphorylation in EGFR-TKI resistant cells, however, results in activation of downstream signaling molecules including Akt and extracellular regulated kinase, ERK 1/2, resulting in maintenance of eukaryotic initiation factor 4F (eIF4F) activation. eIF4F cap-complex formation is maintained in erlotinib-resistant cells, but not in erlotinib-sensitive cells. Finally, using an antisense oligonucleotide against eukaryotic translation initiation factor 4E and a small-molecule inhibitor to disrupt eIF4F formation, we show that cap-dependent translation inhibition can enhance sensitivity to erlotinib. CONCLUSION The results of these studies support further clinical development of translation inhibitors for treatment of NSCLC in combination with erlotinib.
Collapse
|
18
|
Jacobson BA, Thumma SC, Jay-Dixon J, Patel MR, Dubear Kroening K, Kratzke MG, Etchison RG, Konicek BW, Graff JR, Kratzke RA. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide. PLoS One 2013; 8:e81669. [PMID: 24260583 PMCID: PMC3832430 DOI: 10.1371/journal.pone.0081669] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/17/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma. METHODS Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.
Collapse
Affiliation(s)
- Blake A. Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Saritha C. Thumma
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph Jay-Dixon
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Manish R. Patel
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - K. Dubear Kroening
- Department of Biological Sciences, University of Wisconsin-Fox Valley, Menasha, Wisconsin, United States of America
| | - Marian G. Kratzke
- Research Service, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
| | - Ryan G. Etchison
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bruce W. Konicek
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Jeremy R. Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Robert A. Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
19
|
Ninan MJ, Rawal A, Mesa H, Knapp DJ, Kuskowski MA, Gupta P. Expression and phosphorylation of translation regulatory protein 4E-binding protein (BP)-1 in low-risk diffuse large B cell lymphoma. J Hematop 2013. [DOI: 10.1007/s12308-013-0188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
Grosso S, Pesce E, Brina D, Beugnet A, Loreni F, Biffo S. Sensitivity of global translation to mTOR inhibition in REN cells depends on the equilibrium between eIF4E and 4E-BP1. PLoS One 2011; 6:e29136. [PMID: 22216185 PMCID: PMC3245250 DOI: 10.1371/journal.pone.0029136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023] Open
Abstract
Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next.
Collapse
Affiliation(s)
- Stefano Grosso
- Molecular Histology and Cell Growth, DIBIT-HSR, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Patel MR, Sadiq AA, Jay-Dixon J, Jirakulaporn T, Jacobson BA, Farassati F, Bitterman PB, Kratzke RA. Novel role of c-jun N-terminal kinase in regulating the initiation of cap-dependent translation. Int J Oncol 2011; 40:577-82. [PMID: 22076560 DOI: 10.3892/ijo.2011.1252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/23/2011] [Indexed: 02/06/2023] Open
Abstract
Initiation of protein translation by the 5' mRNA cap is a tightly regulated step in cell growth and proliferation. Aberrant activation of cap-dependent translation is a hallmark of many cancers including non-small cell lung cancer. The canonical signaling mechanisms leading to translation initiation include activation of the Akt/mTOR pathway in response to the presence of nutrients and growth factors. We have previously observed that inhibition of c-jun N-terminal kinase (JNK) leads to inactivation of cap-dependent translation in mesothelioma cells. Since JNK is involved in the genesis of non-small cell lung cancer (NSCLC), we hypothesized that JNK could also be involved in activating cap-dependent translation in NSCLC cells and could represent an alternative pathway regulating translation. In a series of NSCLC cell lines, inhibition of JNK using SP600125 resulted in inhibition of 4E-BP1 phosphorylation and a decrease in formation of the cap-dependent translation complex, eIF4F. Furthermore, we show that JNK-mediated inhibition of translation is independent of mTOR. Our data provide evidence that JNK is involved in the regulation of translation and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Manish R Patel
- University of Minnesota Medical School, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Coactivation of receptor tyrosine kinases in malignant mesothelioma as a rationale for combination targeted therapy. J Thorac Oncol 2011; 6:864-74. [PMID: 21774103 DOI: 10.1097/jto.0b013e318215a07d] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION To identify new therapeutic approaches in malignant mesothelioma (MM), we examined the expression and activation of receptor tyrosine kinases (RTKs) and the effects of specific RTK inhibitors and the mammalian target of rapamycin (mTOR) inhibitor rapamycin; the latter being of special interest in MM given the recent linkage between NF2 loss and mTOR activation. METHODS We performed a screen for mutated or activated RTKs in 14 MM cell lines and 70 primary tumors. Expression of phosphorylated RTKs was analyzed by Western blotting and a membrane-based antibody array in normal growth conditions and after treatment by specific inhibitors. MET and epidermal growth factor receptor (EGFR) mutations were screened by sequencing. MET, hepatocyte growth factor, insulin-like growth factor 1 receptor, and EGFR expression were studied by Western blotting, immunohistochemistry, enzyme-linked immunosorbent assay, and by Affymetrix expression microarrays. RESULTS Profiling of the phosphorylation status of 42 RTKs showed prominent coactivation of MET and EGFR in 8 of 14 (57%) MM cell lines. MET, EGFR, and insulin-like growth factor 1 receptor were the main RTKs activated after mTOR inhibition and contributed to AKT feedback activation. Knockdown of MET by RNA interference inhibited not only the phosphorylation of MET but also that of EGFR. Conversely, stimulation with hepatocyte growth factor increased both phospho-MET and phospho-EGFR. The combination of PHA-665752 and the EGFR inhibitor, erlotinib, suppressed cell growth more than either agent alone in three of six cell lines tested. Finally, combinations of rapamycin and different RTK inhibitors were more active than either drug alone in 12 of 13 cell lines. CONCLUSION Combination targeting of kinase signaling pathways is more effective than single agents in most MM.
Collapse
|
23
|
Kodali D, Rawal A, Ninan MJ, Patel MR, Mesa H, Knapp D, Schnitzer B, Kratzke RA, Gupta P. Expression and phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 in B-cell lymphomas and reactive lymphoid tissues. Arch Pathol Lab Med 2011; 135:365-71. [PMID: 21366462 DOI: 10.5858/2009-0759-oa.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Cap-mediated messenger RNA translation controlled by the eukaryotic initiation factor 4F (eIF-4F) complex plays a key role in human cancer. eIF-4F activity is controlled by a repressor binding protein (4E-BP1), which promotes translation when phosphorylated. OBJECTIVE To examine the level of expression and phosphorylation of 4E-BP1 in various subtypes of B-cell lymphoma and reactive lymphoid tissues. DESIGN Archival formalin-fixed, paraffin-embedded B-cell lymphoma samples and reactive lymphoid tissues were immunostained and examined for expression of 4E-BP1 and phosphorylated 4E-BP1. Expression of components of the eIF-4F complex and unphosphorylated and phosphorylated 4E-BP1 was confirmed using Western immunoblotting on lysates of frozen lymphoma samples and reactive tissues. RESULTS Immunohistochemical analysis demonstrated weak to undetectable 4E-BP1 staining within benign, reactive germinal centers (N = 10). In contrast, 4E-BP1 was consistently expressed (moderate to strong staining) in 98% of various subtypes of mature B-cell lymphoma (N = 50). 4E-BP1 expression was also demonstrable in all 4 lymph nodes with in situ or partial involvement by follicular lymphoma and in all 12 cases of BCL2-negative lymphoma. The level of phosphorylation of 4E-BP1 in lymphomas, evaluated by immunohistochemistry, was heterogeneous. CONCLUSIONS The immunohistochemical expression pattern of 4E-BP1 exhibits regional and cellular specificity in reactive lymphoid tissues and may offer a diagnostic tool for distinguishing reactive follicles from neoplastic B-cell proliferations.
Collapse
Affiliation(s)
- Dhatri Kodali
- Hematology-Oncology Section, Departments of Medicine, Veterans Administration Medical Center, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Constantinou C, Fontes de Oliveira CC, Mintzopoulos D, Busquets S, He J, Kesarwani M, Mindrinos M, Rahme LG, Argilés JM, Tzika AA. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int J Mol Med 2010; 27:15-24. [PMID: 21069263 PMCID: PMC3712618 DOI: 10.3892/ijmm.2010.557] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/03/2010] [Indexed: 12/18/2022] Open
Abstract
Cancer patients commonly suffer from cachexia, a syndrome in which tumors induce metabolic changes in the host that lead to massive loss in skeletal muscle mass. Using a preclinical mouse model of cancer cachexia, we tested the hypothesis that tumor inoculation causes a reduction in ATP synthesis and genome-wide aberrant expression in skeletal muscle. Mice implanted with Lewis lung carcinomas were examined by in vivo31P nuclear magnetic resonance (NMR). We examined ATP synthesis rate and the expression of genes that play key-regulatory roles in skeletal muscle metabolism. Our in vivo NMR results showed reduced ATP synthesis rate in tumor-bearing (TB) mice relative to control (C) mice, and were cross-validated with whole genome transcriptome data showing atypical expression levels of skeletal muscle regulatory genes such as peroxisomal proliferator activator receptor γ coactivator 1 ß (PGC-1ß), a major regulator of mitochondrial biogenesis and, mitochondrial uncoupling protein 3 (UCP3). Aberrant pattern of gene expression was also associated with genes involved in inflammation and immune response, protein and lipid catabolism, mitochondrial biogenesis and uncoupling, and inadequate oxidative stress defenses, and these effects led to cachexia. Our findings suggest that reduced ATP synthesis is linked to mitochondrial dysfunction, ultimately leading to skeletal muscle wasting and thus advance our understanding of skeletal muscle dysfunction suffered by cancer patients. This study represents a new line of research that can support the development of novel therapeutics in the molecular medicine of skeletal muscle wasting. Such therapeutics would have wide-spread applications not only for cancer patients, but also for many individuals suffering from other chronic or endstage diseases that exhibit muscle wasting, a condition for which only marginally effective treatments are currently available.
Collapse
Affiliation(s)
- Caterina Constantinou
- NMR Surgical Laboratory, Massachusetts General and Shriners Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|