1
|
Sato J, Nakano K, Miyazaki H. Decreased intracellular chloride enhances cell migration and invasion via activation of the ERK1/2 signaling pathway in DU145 human prostate carcinoma cells. Biochem Biophys Res Commun 2023; 685:149170. [PMID: 37924777 DOI: 10.1016/j.bbrc.2023.149170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Our previous study revealed that changes of the intracellular Cl- concentration ([Cl-]i) affected cell proliferation in cancer cells. However, the role of Cl- on cell migration and invasion in cancer cells remains unanalyzed. Therefore, the aim of the present study is to investigate whether changes of [Cl-]i affects cell migration and invasion of cancer cells. In human prostate cancer DU145 cells, cell migration and invasion were enhanced by culturing in the low Cl- medium (replacement of Cl- by NO3-). We also found that DU145 cells in the low Cl- condition caused significant transient ERK1/2 activation followed by an increase of MMP-1 mRNA levels. Inhibition of ERK1/2 activation in the low Cl- condition reduced enhancement of MMP-1 mRNA levels and decreased cell migration and invasion. These observations indicate that [Cl-]i plays important roles in metastatic function by regulating the ERK1/2 signaling pathway in human prostate cancer cells, and intracellular Cl- would be one of the key targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Junichi Sato
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Koya Nakano
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hiroaki Miyazaki
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
2
|
Li S, Zhang W, Liang P, Zhu M, Zheng B, Zhou W, Wang C, Zhao X. Novel variants in the CLCN4 gene associated with syndromic X-linked intellectual disability. Front Neurol 2023; 14:1096969. [PMID: 37789889 PMCID: PMC10542403 DOI: 10.3389/fneur.2023.1096969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Objective The dysfunction of the CLCN4 gene can lead to X-linked intellectual disability and Raynaud-Claes syndrome (MRXSRC), characterized by severe cognitive impairment and mental disorders. This study aimed to investigate the genetic defects and clinical features of Chinese children with CLCN4 variants and explore the effect of mutant ClC-4 on the protein expression level and subcellular localization through in vitro experiments. Methods A total of 401 children with intellectual disabilities were screened for genetic variability using whole-exome sequencing (WES). Clinical data, including age, sex, perinatal conditions, and environmental exposure, were collected. Cognitive, verbal, motor, and social behavioral abilities were evaluated. Candidate variants were verified using Sanger sequencing, and their pathogenicity and conservation were analyzed using in silico prediction tools. Protein expression and localization of mutant ClC-4 were measured using Western blotting (WB) and immunofluorescence microscopy. The impact of a splice site variant was assessed with a minigene assay. Results Exome analysis identified five rare CLCN4 variants in six unrelated patients with intellectual disabilities, including two recurrent heterozygous de novo missense variants (p.D89N and p.A555V) in three female patients, and two hemizygous missense variants (p.N141S and p.R694Q) and a splicing variant (c.1390-12T > G) that are maternally inherited in three male patients. The p.N141S variant and the splicing variant c.1390-12(T > G were novel, while p.R694Q was identified in two asymptomatic heterozygous female patients. The six children with CLCN4 variants exhibited a neurodevelopmental spectrum disease characterized by intellectual disability (ID), delayed speech, autism spectrum disorders (ASD), microcephaly, hypertonia, and abnormal imaging findings. The minigene splicing result indicated that the c.1390-12T > G did not affect the splicing of CLCN4 mRNA. In vitro experiments showed that the mutant protein level and localization of mutant protein are similar to the wild type. Conclusion The study identified six probands with CLCN4 gene variants associated with X-linked ID. It expanded the gene and phenotype spectrum of CLCN4 variants. The bioinformatic analysis supported the pathogenicity of CLCN4 variants. However, these CLCN4 gene variants did not affect the ClC-4 expression levels and protein location, consistent with previous studies. Further investigations are necessary to investigate the pathogenetic mechanism.
Collapse
Affiliation(s)
- Sinan Li
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxin Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Piao Liang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Wang C, Li J, Liu W, Li S, Zhang Y, Jin Y, Cui J. Comprehensive analysis and experimental validation reveal elevated CLCN4 is a promising biomarker in endometrial cancer. Aging (Albany NY) 2023; 15:8744-8769. [PMID: 37671947 PMCID: PMC10522378 DOI: 10.18632/aging.204994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Several studies have reported the role of CLCN4 in tumor progression. However, its mechanism remains to be thoroughly studied. The objective of this study was to explore the potential pathogenic role of CLCN4 in endometrial carcinoma (UCEC) with a better understanding of the pathological mechanisms involved. The potential roles of CLCN4 in different tumors were explored based on The Cancer Genome Atlas (TCGA), the expression difference, mutation, survival, pathological stage, Immunity subtypes, Immune infiltration, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) related to CLCN4 were analyzed. Then, the expression, prognosis, mutation, and functional enrichment of CLCN4 in UCEC were analyzed. Immunohistochemical experiment was used to verify the expression of CLCN4 in endometrial cancer tissues and normal tissues. In vitro, we knocked down of CLCN4 in HEC-1-A cells and performed CCK8, WB, RT-PCR, wound-healing, transwell assays to further validation of the molecular function. Results revealed that high expression of CLCN4 was observed in 20 cancer types of TCGA. CLCN4 expression correlates with poor survival in MESO, BLCA, THCA, especially UCEC tumors. CLCN4 expression was significantly associated with CD4+ T-cell infiltration, especially CD4+ Th1-cell. Immunohistochemical experiment reveals that CLCN4 is high expressed in endometrial tumors, in vitro experiment reveals that knockdown of CLCN4 inhibits the cells proliferation, migration and invasion. Our study is the first to offer a comprehensive understanding of the oncogenic roles of CLCN4 on different tumors. CLCN4 may become a potential biomarker in UCEC.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jing Li
- Department of Gynecology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong 266000, China
| | - Weina Liu
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Shiya Li
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yi Zhang
- Department of Gynecology, The University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Yanbin Jin
- Department of Gynecology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou 570311, China
| | - Jinquan Cui
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
4
|
Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers (Basel) 2022; 14:cancers14040856. [PMID: 35205604 PMCID: PMC8870652 DOI: 10.3390/cancers14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Roles of chloride-associated transporters have been raised in various cancers. Although complicated ion movements, crosstalk among channels/transporters through homeostatic electric regulation, difficulties with experimental implementation such as activity measurement of intracellular location were disturbed to verify the precise modulation of channels/transporters, recently defined cancerous function and communication with tumor microenvironment of chloride channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-associated transporters as membrane-associated components of chloride movement, regulations of transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member 206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and chloride-bicarbonate exchangers are discussed. Abstract The canonical roles of chloride channels and chloride-associated transporters have been physiologically determined; these roles include the maintenance of membrane potential, pH balance, and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative processes. However, chloride channels/transporters also play other roles, beyond these classical function, in cancerous tissues and under specific conditions. Here, we focused on the chloride channel-associated cancers and present recent advances in understanding the environments of various types of cancer caused by the participation of many chloride channel or transporters families and discuss the challenges and potential targets for cancer treatment. The modulation of chloride channels/transporters might promote new aspect of cancer treatment strategies.
Collapse
|
5
|
Luo Y, Liu X, Li X, Zhong W, Lin J, Chen Q. Identification and validation of a signature involving voltage-gated chloride ion channel genes for prediction of prostate cancer recurrence. Front Endocrinol (Lausanne) 2022; 13:1001634. [PMID: 36246902 PMCID: PMC9561150 DOI: 10.3389/fendo.2022.1001634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated chloride ion channels (CLCs) are transmembrane proteins that maintain chloride ion homeostasis in various cells. Accumulating studies indicated CLCs were related to cell growth, proliferation, and cell cycle. Nevertheless, the role of CLCs in prostate cancer (PCa) has not been systematically profiled. The purpose of this study was to investigate the expression profiles and biofunctions of CLCs genes, and construct a novel risk signature to predict biochemical recurrence (BCR) of PCa patients. We identified five differentially expressed CLCs genes in our cohort and then constructed a signature composed of CLCN2 and CLCN6 through Lasso-Cox regression analysis in the training cohort from the Cancer Genome Atlas (TCGA). The testing and entire cohorts from TCGA and the GSE21034 from the Gene Expression Omnibus (GEO) were used as internal and independent external validation datasets. This signature could divide PCa patients into the high and low risk groups with different prognoses, was apparently correlated with clinical features, and was an independent excellent prognostic indicator. Enrichment analysis indicated our signature was primarily concentrated in cellular process and metabolic process. The expression patterns of CLCN2 and CLCN6 were detected in our own cohort based immunohistochemistry staining, and we found CLCN2 and CLCN6 were highly expressed in PCa tissues compared with benign tissues and positively associated with higher Gleason score and shorter BCR-free time. Functional experiments revealed that CLCN2 and CLCN6 downregulation inhibited cell proliferation, colony formation, invasion, and migration, but prolonged cell cycle and promoted apoptosis. Furthermore, Seahorse assay showed that silencing CLCN2 or CLCN6 exerted potential inhibitory effects on energy metabolism in PCa. Collectively, our signature could provide a novel and robust strategy for the prognostic evaluation and improve treatment decision making for PCa patients.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Xiaopeng Liu
- Department of Science and Teaching, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Xiaoxiao Li
- Department of Nursing Administration, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Weide Zhong
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| | - Jingbo Lin
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| | - Qingbiao Chen
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| |
Collapse
|
6
|
Mu H, Mu L, Gao J. Suppression of CLC-3 reduces the proliferation, invasion and migration of colorectal cancer through Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2020; 533:1240-1246. [PMID: 33069359 DOI: 10.1016/j.bbrc.2020.09.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE In the present study, we attempted to explore the role of chloride channel 3 (CLC-3) in colorectal cancer (CRC) and its related mechanism. METHODS First, the expression level of CLC-3 in CRC tumor tissues and cell lines were measured by RT-qPCR, immunohistochemistry or western blot analysis. CLC-3 expression knockdown in CRC cells was achieved by siRNA transfection. The effect of CLC-3 silence on cell viability, cell cycle, invasion and migration of CRC was estimated by CCK8, flow cytometry based cell cycle assay, and transwell assay, respectively. In order to investigate whether Wnt/β-catenin signaling was perturbed by CLC-3 knockdown, CLC-3 knockdown cells were treated with pathway activator LiCl, followed by the measurement of the expressions of pathway related genes, cell viability, cell cycle, metastasis ability. RESULTS The expression of CLC-3 was gradually increased from normal adjacent tissues to CRC tumor tissues, and the increase in tumor tissues was related to TNM stages. CLC-3 was overexpressed in four CRC cell lines (HCT116, SW480, LoVo and SW620), compared with NCM460 cells. CLC-3 knockdown significantly reduced cell proliferation, invasion and migration ability, reflected by declined cell viability, arrested G0/G1 cell cycle, decreased invasion and migration ability. In contrast, the declined cell proliferation, invasion and migration of LoVo and SW620 cells induced by CLC-3 knockdown were reversed by the addition of Wnt/β-catenin activator LiCl. CONCLUSION CLC-3 contributed to the CRC development and metastasis through Wnt/β-catenin signaling pathway. CLC-3 could be proposed as the candidate target for CRC treatment.
Collapse
Affiliation(s)
- Hailian Mu
- Department of Gastroenterology, Linyi People's Hospital, Wo Hushan Road, Lanshan District, Linyi City, Shandong, 276002, China
| | - Linjun Mu
- Department of Gastroenterology, Weifang People's Hospital, Shandong, China
| | - Jianfei Gao
- Department of Intensive Care Unit, Linyi People's Hospital, Wo Hushan Road, Lanshan District, Linyi City, Shandong, 276002, China.
| |
Collapse
|
7
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
8
|
Zhu XH, Lang HD, Wang XL, Hui SC, Zhou M, Kang C, Yi L, Mi MT, Zhang Y. Synergy between dihydromyricetin intervention and irinotecan chemotherapy delays the progression of colon cancer in mouse models. Food Funct 2019; 10:2040-2049. [PMID: 30907395 DOI: 10.1039/c8fo01756e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is the third highest cause of cancer-related death and the main option for prolonged survival is chemotherapeutic intervention. There is increasing interest in dietary intervention using natural agents to enhance the sensitivity of such invasive chemical treatment. In this study, the chemotherapeutic efficacy of dihydromyricetin (DMY) intervention on treatments involving irinotecan (CPT-11) or gemcitabine (GM) was evaluated in an AOM/DSS-induced colitis-associated colon cancer model and a Min (Apc Min/+) mice model. Our data showed that DMY could promote the CPT-11 effect both in the mouse model of AOM/DSS and Apc Min/+ cancer and had no influence on the GM effect. In AOM/DSS cancer, tumors were sensitive to 100 mg kg-1 DMY chemotherapy under 100 mg kg-1 or 200 mg kg-1 CPT-11. DMY-driven CPT-11 chemotherapy induced enhanced IgG levels and the reduction of Fusobacterium abundance in the gut. In the Min model, CPT-11 with 20 mg kg-1 DMY prevented tumor formation but not with 100 mg kg-1 DMY. Mechanically, chloride ion-dependent CFTR, CLCN4, and CLIC4 signaling are not involved in DMY mediated chemotherapeutic colon tumorigenesis. These results suggested that a suitable dose of DMY could act as a coadjuvant to CPT-11 chemotherapy.
Collapse
Affiliation(s)
- Xiao-Hui Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
10
|
Crosstalk between gut microbiota and Sirtuin-3 in colonic inflammation and tumorigenesis. Exp Mol Med 2018; 50:1-11. [PMID: 29650970 PMCID: PMC5938040 DOI: 10.1038/s12276-017-0002-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is a disease involving a variety of genetic and environmental factors. Sirtuin-3 (Sirt3) is expressed at a low level in cancer tissues of CRC, but it is unclear how Sirt3 modulates colonic tumorigenesis. In this study, we found that gut microbiota play a central role in the resistance to CRC tumor formation in wild-type (WT) mice through APC (Adenomatous Polyposis Coli)-mutant mouse microbiota transfer via Wnt signaling. We also found that Sirt3-deficient mice were hypersusceptible to colonic inflammation and tumor development through altered intestinal integrity and p38 signaling, respectively. Furthermore, susceptibility to colorectal tumorigenesis was aggravated by initial commensal microbiota deletion via Wnt signaling. Mice with Sirt3-deficient microbiota transfer followed by chemically induced colon tumorigenesis had low Sirt3 expression compared to WT control microbiome transfer, mainly due to a decrease in Escherichia/Shigella, as well as an increase in Lactobacillus reuteri and Lactobacillus taiwanensis. Collectively, our data revealed that Sirt3 is an anti-inflammatory and tumor-suppressing gene that interacts with the gut microbiota during colon tumorigenesis. Boosting specific beneficial bacteria in the gut may enhance expression levels of a tumor-suppressing gene in colorectal cancer (CRC). Both genetic factors and the bacteria present in the gut play vital roles in CRC development. However, it is unclear exactly how genes interact with the bacteria to affect tumor growth. Man-tian Mi and co-workers at the Third Military Medical University in Chongqing, China, examined the role of a gene called Sirt-3 in CRC development. Mice lacking the Sirt-3 gene suffered severe chronic inflammation and developed tumors due to altered signalling pathways and reduced intestinal integrity. Further, the guts of the mice harboured more pathogenic bacteria than wild-type mice. The team also found lower levels of two key types of beneficial bacteria that would ordinarily prevent reduced Sirt-3 expression.
Collapse
|
11
|
Zhang Y, Kang C, Wang XL, Zhou M, Chen MT, Zhu XH, Liu K, Wang B, Zhang QY, Zhu JD, Mi MT. Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Microbiota and Host Chloride Channels. Mol Nutr Food Res 2018; 62. [DOI: 10.1002/mnfr.201700554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/04/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Zhang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Chao Kang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Xiao-lan Wang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Min Zhou
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Meng-ting Chen
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Xiao-hui Zhu
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Kai Liu
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Bin Wang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Qian-yong Zhang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Jun-dong Zhu
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Man-tian Mi
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| |
Collapse
|
12
|
Li Y, Zhang J, Hong S. ANO1 as a marker of oral squamous cell carcinoma and silencing ANO1 suppresses migration of human SCC-25 cells. Med Oral Patol Oral Cir Bucal 2014; 19:e313-9. [PMID: 24316695 PMCID: PMC4119304 DOI: 10.4317/medoral.19076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/21/2013] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The purpose of this study is to confirm that ANO1 correlates with occurrence and metastasis of OSCC. STUDY DESIGN Immunohistochemistry was used to detect the expression of ANO1 in 160 specimens of OSCC and normal tissues. Lentiviral silencing ANO1 was used in SCC-25 cell line to study the cell migration and cell detachment. RESULTS Immunohistochemical staining revealed that ANO1 was expressed in a large majority (132 out of 160, 82.5%) of OSCC specimens and that the rate of ANO1 expression in OSCC was significantly higher than that of normal tissue (P<0.05); The rate of ANO1 expression was higher in metastatic tumors than in non-metastatic tumors, and the difference was significant (P<0.05). The results of cell migration assay showed that the percentage of cells through the membrane was 26.61 ±0.81 in assay group, and 54.26 ±3.74 in control group, respectively (t=-16.22,P<0.0001). The results of cell detachment assay showed that the percentage of cells detachment was 37.42 ±0.90 in assay group, and 87.38 ±1.59 in control group, respectively (t=-62.34, P<0.0001). The results of wound healing assay showed the assay group had a reduced migration rate compared with the control group in 32 h (F=1038.78, P<0.0001). Wound closure was no significantly different between the assay and control cells when DIDS was used in wound healing assay (F=4.61,P>0.05). CONCLUSIONS Our study shows that abnormal expression of ANO1 correlated with the occurrence and metastasis of OSCC in clinical specimens and that silencing ANO1 greatly reduced migration ability of scc-25 cells. Calcium activated chloride channel activity of ANO1 promoted the cell migration. Thus, ANO1 could represent a new diagnostic biomarker and a potentially important therapeutic target of OSCC.
Collapse
Affiliation(s)
- Yadong Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, No.400016, Chongqing, China,
| | | | | |
Collapse
|
13
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
14
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
15
|
Abstract
Ion channels and G-protein-coupled receptors (GPCRs) play a fundamental role in cancer progression by influencing Ca(2+) influx and signaling pathways in transformed cells. Transformed cells thrive in a hostile environment that is characterized by extracellular acidosis that promotes the pathological phenotype. The pathway(s) by which extracellular protons achieve this remain unclear. Here, a role for proton-sensing ion channels and GPCRs as mediators of the effects of extracellular protons in cancer cells is discussed.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
16
|
Nishisho T, Hata K, Nakanishi M, Morita Y, Sun-Wada GH, Wada Y, Yasui N, Yoneda T. The a3 isoform vacuolar type H⁺-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 2011; 9:845-55. [PMID: 21669964 DOI: 10.1158/1541-7786.mcr-10-0449] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accumulating evidence indicates that the acidic microenvironments critically influence malignant behaviors of cancer including invasiveness, metastasis, and chemoresistance. Because the vacuolar-type H(+)-ATPase (V-ATPase) has been shown to cause extracellular acidification by pumping protons, we studied the role of V-ATPase in distant metastasis. Real-time PCR analysis revealed that the high-metastatic B16-F10 melanoma cells strongly expressed the a3 isoform V-ATPase compared to the low-metastatic B16 parental cells. Consistent with this, B16-F10 cells created acidic environments in lung metastases by acridine orange staining and strong a3 V-ATPase expression in bone metastases by immunohistochemistry. Immunocytochemical analysis showed B16-F10 cells expressed a3 V-ATPase not only in cytoplasm but also plasma membrane, whereas B16 parental cells exhibited its expression only in cytoplasm. Of note, knockdown of a3 V-ATPase suppressed invasiveness and migration with reduced MMP-2 and MMP-9 expression in B16-F10 cells and significantly decreased lung and bone metastases, despite that tumor growth was not altered. Importantly, administration of a specific V-ATPase a3 inhibitor FR167356 reduced bone metastasis of B16-F10 cells. These results suggest that a3 V-ATPase promotes distant metastasis of B16-F10 cells by creating acidic environments via proton secretion. Our results also suggest that inhibition of the development of cancer-associated acidic environments by suppressing a3 V-ATPase could be a novel therapeutic approach for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Toshihiko Nishisho
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|