1
|
Liu Z, Yu M, Fei B, Sun J, Wang D. Identification Of Natural Compound Derivative For Inhibition Of XLF And Overcoming Chemoresistance In Colorectal Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3823-3834. [PMID: 31806933 PMCID: PMC6847993 DOI: 10.2147/dddt.s215967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Purpose A previous study has identified that XRCC4-like factor (XLF) is a potential target to overcome resistance to 5-fluorouracil (5-Fu) and oxaliplatin (OXA) in colorectal cancer (CRC). The purpose of this study is to develop potent XLF inhibitors to chemoresistance in CRC. Methods Virtual screening was adopted to identify novel XLF-binding compounds by initially testing 6800 molecules in Chemical Entities of Biological Interest library. Hit compounds were further validated by Western blot assay. Cell sensitivity to 5-Fu and OXA was measured using sulforhodamine B assay. The effect of XLF inhibitor on DNA repair efficiency was evaluated by comet assay, fluorescent-based nonhomologous end joining (NHEJ) and homologous recombination (HR) reporter assays. DNA-binding activity of NHEJ key factors was examined by chromatin fractionation assay. Results We identified G3, a novel and potent XLF inhibitor (IC50 0.47±0.02 µM). G3 induced XLF protein degradation in CRC cells. Significantly, G3 improved cell sensitivity to 5-Fu and OXA in chemoresistant CRC cell lines. Mechanistically, G3 depleted XLF expression, severely compromised NHEJ efficiency by up to 65% and inhibited NHEJ key factor assembly on DNA. G3 also inhibited HR efficiency in a time-dependent manner. Conclusion These results suggest that G3 overcomes 5-Fu and OXA resistance in CRC cells by inhibiting XLF expression. Thus, XLF is a promising target and its inhibitor G3 is a potential candidate for treatment of chemoresistant CRC patients.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Miao Yu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, People's Republic of China
| |
Collapse
|
2
|
Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 2013; 65:1748-62. [PMID: 23973912 DOI: 10.1016/j.addr.2013.08.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing microtumor tissues in vitro are discussed in detail.
Collapse
|
3
|
Wilk A, Waligorska A, Waligorski P, Ochoa A, Reiss K. Inhibition of ERβ induces resistance to cisplatin by enhancing Rad51-mediated DNA repair in human medulloblastoma cell lines. PLoS One 2012; 7:e33867. [PMID: 22439007 PMCID: PMC3306313 DOI: 10.1371/journal.pone.0033867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/23/2012] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ERβ, which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ERβ considered as a supplemental anticancer therapy, has been found to interfere with cisplatin–induced cytotoxicity in human medulloblastoma cell lines.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Agnieszka Waligorska
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Piotr Waligorski
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Augusto Ochoa
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Krzysztof Reiss
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 2007; 63:12-31. [PMID: 17336087 DOI: 10.1016/j.critrevonc.2007.02.001] [Citation(s) in RCA: 455] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/25/2007] [Accepted: 02/02/2007] [Indexed: 02/08/2023] Open
Abstract
While cisplatin and carboplatin are active versus most common cancers, epithelial malignancies are incurable when metastatic. Even if an initial response occurs, acquired resistance due to mutations and epigenetic events limits efficacy. Resistance may be due to excess of a resistance factor, to saturation of factors required for tumor cell killing, or to mutation or alteration of a factor required for tumor cell killing. Platinum resistance could arise from decreased tumor blood flow, extracellular conditions, reduced platinum uptake, increased efflux, intracellular detoxification by glutathione, etc., decreased binding (e.g., due to high intracellular pH), DNA repair, decreased mismatch repair, defective apoptosis, antiapoptotic factors, effects of several signaling pathways, or presence of quiescent non-cycling cells. In lung cancer, flattening of dose-response curves at higher doses suggests that efficacy is limited by exhaustion of something required for cell killing, and several clinical observations suggest epigenetic events may play a major role in resistance.
Collapse
Affiliation(s)
- David J Stewart
- Section of Experimental Therapeutics, Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Ito M, Yamamoto S, Nimura K, Hiraoka K, Tamai K, Kaneda Y. Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med 2005; 7:1044-52. [PMID: 15756713 DOI: 10.1002/jgm.753] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Every cancer therapy appears to be transiently effective for cancer regression, but cancers gradually transform to be resistant to the therapy. Cancers also develop machineries to resist chemotherapy. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. Suppression of the machineries using siRNA may enhance the sensitivity to chemotherapy in cancers when combined with an effective delivery system. METHODS To enhance the anti-cancer effect of chemotherapy, we transferred siRNA against Rad51 into various human cancer cells using the HVJ (hemagglutinating virus of Japan, Sendai virus) envelope vector in the presence or absence of cis-diamminedichloroplatinum(II) (CDDP, cisplatin). The inhibition of cell growth was assessed by a modified MTT assay, counting cell number, or fluorescence-activated cell sorting (FACS) analysis after Annexin V labeling. The synthetic Rad51 siRNA was also introduced into subcutaneous tumor masses of HeLa cells in SCID mice with or without intraperitoneal injection of CDDP, and tumor growth was monitored. RESULTS When synthetic Rad51 siRNA was delivered into HeLa cells using the HVJ envelope vector, no Rad51 transcripts were detected on day 2, and Rad51 protein completely disappeared for 4 days after siRNA transfer. When HeLa cells were incubated with 0.02 microg/ml CDDP for 3 h after siRNA transfer, the number of colonies decreased to approximately 10% of that with scrambled siRNA. The sensitivity to CDDP was enhanced in various human cancer cells, but not in normal human fibroblasts. When Rad51 siRNA was delivered into tumors using the HVJ envelope vector, the Rad51 transcript level was reduced to approximately 25%. Rad51 siRNA combined with CDDP significantly inhibited tumor growth when compared to siRNA or CDDP alone. CONCLUSIONS Rad51 siRNA could enhance the sensitivity to CDDP in cancer cells both in vitro and in vivo. Our results suggest that the combination of CDDP and Rad51 siRNA will be an effective anti-cancer protocol.
Collapse
Affiliation(s)
- Makoto Ito
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565 -0871, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Metastatic melanoma has a poor prognosis due to resistance to multiple chemotherapy regimens. The mainstay of treatment remains dacarbazine, with cisplatin being a commonly used alternative. Melanoma displays marked resistance to the DNA-damaging effects of these drugs. Intrinsic and acquired resistance involves multiple cellular pathways of damage recognition, repair and apoptosis. Increased understanding of these pathways is identifying novel targets that it is hoped will make inroads into the treatment of this lethal disease.
Collapse
Affiliation(s)
- Penny A Bradbury
- Cancer Research UK Medical Oncology Unit, Churchill Hospital, Oxford, UK
| | | |
Collapse
|
7
|
Beljanski V, Marzilli LG, Doetsch PW. DNA damage-processing pathways involved in the eukaryotic cellular response to anticancer DNA cross-linking drugs. Mol Pharmacol 2004; 65:1496-506. [PMID: 15155842 DOI: 10.1124/mol.65.6.1496] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a panel of isogenic Saccharomyces cerevisiae strains compromised in several different DNA damage-processing pathways to assess in vivo processing of DNA adducts induced by four cross-linking anticancer drugs. By examining cytotoxicity profiles, cell cycle arrest patterns, and determining recombination and mutation frequencies, we found that cisplatin-, nitrogen mustard-, mitomycin-, and carmustine-induced DNA adducts in S. cerevisiae are processed by components of the nucleotide excision repair (NER), recombination repair (RR), and translesion synthesis (TLS) pathways, with substantially different contributions of each pathway for the drugs studied here. In contrast to previous studies that used single pathway-compromised strains to identify genes that mediate sensitivity to DNA cross-linking drugs, we used strains that were compromised in multiple pathways. By doing so, we were able to establish several functions that were previously unknown and interconnections between different DNA damage-processing pathways. To our surprise, we found that for cisplatin-induced cytotoxicity, TLS and RR contribute to survival to a significant extent. In the case of nitrogen mustard DNA adduct processing, equal involvement of two major pathways was established: one that requires functional RR and NER components and one that requires functional TLS and NER components. These data reveal the complexity of DNA cross-link processing that, in many cases, requires interactions of components from several different DNA damage-processing systems. We demonstrate the usefulness of yeast strains with multiple simultaneous defects in DNA damage-processing pathways for studying the modes of action of anticancer drugs.
Collapse
|
8
|
Abstract
Non-homologous DNA end-joining (NHEJ) is a major pathway of double strand break (DSB) repair in human cells. Here we show that vanillin (3-methoxy-4-hydroxybenzaldehyde)--a naturally occurring food component and an acknowledged antimutagen, anticlastogen and anticarcinogen--is an inhibitor of NHEJ. Vanillin blocked DNA end-joining by human cell extracts by directly inhibiting the activity of DNA-PK, a crucial NHEJ component. Inhibition was selective and vanillin had no detectable effect on other steps of the NHEJ process, on an unrelated protein kinase or on DNA mismatch repair by cell extracts. Subtoxic concentrations of vanillin did not affect the ATM/ATR-dependent phosphorylation of Chk2 or the S-phase checkpoint response after ionising radiation. They significantly potentiated the cytotoxicity of cisplatin, but did not affect sensitivity to UVC. A limited screen of structurally related compounds identified two substituted vanillin derivatives that were 100- and 50-fold more potent than vanillin as DNA-PK inhibitors. These compounds also sensitised cells to cisplatin. The inhibition of NHEJ is consistent with the antimutagenic and other biological properties of vanillin, possibly altering the balance between DSB repair by NHEJ and homologous recombination.
Collapse
Affiliation(s)
- Stephen Durant
- Mammalian DNA Repair, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3LD, UK.
| | | |
Collapse
|
9
|
Kim CH, Park SJ, Lee SH. A targeted inhibition of DNA-dependent protein kinase sensitizes breast cancer cells following ionizing radiation. J Pharmacol Exp Ther 2002; 303:753-9. [PMID: 12388662 DOI: 10.1124/jpet.102.038505] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major mechanism by which cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs is by enhanced DNA repair of the lesions; therefore, through inhibition of DNA repair pathways that tumor cells rely on to escape chemotherapy, we expect to increase the killing of cancer cells and reduce drug resistance. DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase essential for DNA repair as well as sensing and transmitting a damage signal to downstream targets leading to cell cycle arrest. We used a peptide cotherapy strategy to see whether a targeted inhibition of DNA-PK activity sensitizes breast cancer cells in response to IR or chemotherapy drug. A synthesized peptide representing the C terminus of Ku80 (HNI-38) selectively targeted and disrupted interaction between Ku complex and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) as well as the DNA binding activity of Ku that led to the inhibition of DNA-PK activity and reduction in double-stranded DNA break (dsb) repair activity. Furthermore, a peptide-based inhibitor with target sequence effectively inhibited the growth of breast cancer cells only in the presence of DNA damage, suggesting that the target peptide sensitizes cancer cells through blocking dsb DNA repair activity. Together, this study not only validates the involvement of the C terminus of Ku80 in Ku's DNA termini binding and interaction with DNA-PKcs, but also a supports physiological role for DNA-PK in IR or chemotherapy drug resistance of cancer cells.
Collapse
Affiliation(s)
- Chung-Hui Kim
- Department of Biochemistry & Molecular Biology, Indiana University Cancer Center, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
10
|
Tanyi JL, Lapushin R, Eder A, Auersperg N, Tabassam FH, Roth JA, Gu J, Fang B, Mills GB, Wolf J. Identification of tissue- and cancer-selective promoters for the introduction of genes into human ovarian cancer cells. Gynecol Oncol 2002; 85:451-8. [PMID: 12051873 DOI: 10.1006/gyno.2002.6644] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE One potential limitation of gene therapy for epithelial tumors is the lack of tissue or tumor specificity of treatment. Tumor-selective expression of gene therapies may avoid deleterious side effects and improve the efficacy of the treatment. The aim of this study was to evaluate the tissue and tumor specificity of four different potential gene therapy promoters, to determine their usefulness in tissue-specific gene therapy of epithelial ovarian carcinomas. METHODS Three potential epithelial cell-selective (hESE1, SLP1, OSP1) and one potential tumor-selective (hTERT) promoter were placed upstream of a luciferase construct to determine relative activity in a wide variety of normal and malignant cell lines. Transient transfection and luciferase assays were carried out in 12 epithelial ovarian (3 SV40 T antigen-transfected normal and 9 malignant) and 8 control cell lines. RESULTS Luciferase assays revealed that the hTERT promoter presented the highest tumor selectivity. hESE1 and SLP1 promoters showed strong epithelial cell selectivity (hESE1, 16/17; SLP1, 15/17), with the OSP1 (11/17) promoter exhibiting lower epithelial selectivity. Of the potential promoters for gene therapy, hTERT promoter exhibited the strongest transcriptional activity in most of the tumor cell lines. None of the promoters exhibited strict ovarian epithelium selectivity. CONCLUSION The hTERT promoter may be an optimal promoter for a univector gene therapy approach based on its high tumor selectivity. Utilization of multiple epithelial cell-specific promoters may result in a more tissue-selective gene therapy approach. Using a combination of promoters may prevent potential problems due to expression in nonepithelial stem cells that may constitutively express hTERT.
Collapse
Affiliation(s)
- Janos L Tanyi
- Department of Molecular Therapeutics, University of Texas, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guminski AD, Harnett PR, deFazio A. Scientists and clinicians test their metal-back to the future with platinum compounds. Lancet Oncol 2002; 3:312-8. [PMID: 12067809 DOI: 10.1016/s1470-2045(02)00733-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After more than two decades of extensive use, drugs based on platinum continue to have a major role in cancer treatment. Although systematic approaches to the development of new analogues have produced agents with less toxicity and novel mechanisms of action, to date such approaches have not achieved more cures than can be achieved with the parent compound, cisplatin. Greater gains might be expected from accumulating knowledge about what makes cancer cells sensitive or resistant to platinum-based chemotherapy. Recent information on drug-efflux pathways, including expression of multidrug-resistance protein 2, and on how tumour cells behave when their DNA is distorted by a platinum adduct, suggests new avenues for translational research. The prospects include modulation of cellular handling of platinum compounds and individualised therapy based on expression of molecules that determine platinum sensitivity.
Collapse
Affiliation(s)
- Alexander D Guminski
- Department of Medical Oncology and Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead Hospital, NSW 2145, Australia.
| | | | | |
Collapse
|
12
|
Britten RA. Modification of radiosensitivity following chemotherapy exposure: potential implications for combined-modality therapy. Cancer Treat Res 2002; 112:285-303. [PMID: 12481721 DOI: 10.1007/978-1-4615-1173-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
13
|
Pearce AG, Segura TM, Rintala AC, Rintala-Maki ND, Lee H. The generation and characterization of a radiation-resistant model system to study radioresistance in human breast cancer cells. Radiat Res 2001; 156:739-50. [PMID: 11741498 DOI: 10.1667/0033-7587(2001)156[0739:tgacoa]2.0.co;2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To systematically study the selection of radioresistant cells in clinically advanced breast cancer, a model system was generated by treating MDA-MB231 breast cancer cells with fractionated gamma radiation. A clonogenic assay of the surviving cell populations showed that 2-6 Gy per fraction resulted in a rapid selection of radioresistant populations, within three to five fractions. Irradiation with additional fractions after this initial increase did not increase the radioresistance of the surviving population significantly. Doses of 0.5 and 8 Gy per fraction were not effective in selecting radioresistant cells. To further determine the cause of the changes in radiosensitivity, 15 clones were isolated from the cell populations treated with 40 or 60 Gy with 2 or 4 Gy per fraction, respectively, and were analyzed for radiosensitivity. The average D(10) for these clones was 6.75 +/- 0.36 Gy, which was higher than that for the parental cell population (D(10) = 6.0 +/- 0.2 Gy). The operation of cell cycle checkpoints and the doubling time were similar for both the nonirradiated parental population and the isolated radioresistant subclones. In contrast, a decrease in the apoptotic potential was correlated (r = 0.7, P < 0.01) with increased survival after irradiation, suggesting that apoptosis is an important factor in determining radioresistance under our experimental conditions. We also isolated several subclones from the nonirradiated parental cell population and analyzed them to determine their radiosensitivity after fractionated irradiation. Ten fractions of 4 Gy (40 Gy in total) did not result in a significant increase in the radioresistance of these subclones compared to the irradiated cell populations. The possible mechanisms of the increased radioresistance after fractionated irradiation are discussed.
Collapse
Affiliation(s)
- A G Pearce
- Department of Research, Northeastern Ontario Regional Cancer Centre, 41 Ramsey Lake Road, Sudbury, Ontario, Canada. P3E 5J1
| | | | | | | | | |
Collapse
|
14
|
Britten RA, Klein K. Differential impact of Raf-1 kinase activity on tumor cell resistance to paclitaxel and docetaxel. Anticancer Drugs 2000; 11:439-43. [PMID: 11001384 DOI: 10.1097/00001813-200007000-00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Docetaxel (Taxotere) is becoming increasingly important in the treatment of many tumor sites and is unusually active in tumors that are resistant to the structurally similar taxane, paclitaxel. These data suggest that the processes that confer cellular paclitaxel resistance may have a substantially lower impact upon the cytotoxicity induced by docetaxel. We have recently reported that there is a marked Raf-1 kinase dependency of paclitaxel resistance in human cervical and ovarian tumor cell lines. We therefore characterized the impact that inherent and genetically induced variations in Raf-1 kinase activity have on the docetaxel cytotoxicity in human ovarian and cervical cancer cell lines. Our data suggest that docetaxel cytotoxicity is independent of Raf-1 kinase activity in the cell lines studied and that the lack of cross-resistance between these two taxane compounds may be due to the differential impact that Raf-1 kinase activity has on their cytotoxicity. Should these relationships pertain to the clinical situation, these findings could form the basis for a molecular-based triage of patients to receive docetaxel when response to paclitaxel may be unlikely due to high Raf-1 kinase activity.
Collapse
Affiliation(s)
- R A Britten
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada.
| | | |
Collapse
|