1
|
Mu X, Liu H, Yang S, Li Y, Xiang L, Hu M, Wang X. Chitosan Tubes Inoculated with Dental Pulp Stem Cells and Stem Cell Factor Enhance Facial Nerve-Vascularized Regeneration in Rabbits. ACS OMEGA 2022; 7:18509-18520. [PMID: 35694480 PMCID: PMC9178771 DOI: 10.1021/acsomega.2c01176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Facial nerve injury is a common clinical condition that leads to disfigurement and emotional distress in the affected individuals, and the recovery presents clinical challenges. Tissue engineering is the standard method to repair nerve defects. However, nerve regeneration is still not satisfactory because of poor neovascularization after implantation, especially for the long-segment nerve defects. In the current study, we aimed to investigate the potential of chitosan tubes inoculated with stem cell factor (SCF) and dental pulp stem cells (DPSCs) in facial nerve-vascularized regeneration. In the in vitro experiment, DPSCs were isolated, cultured, and then identified. The optimal concentration of SCF was screened by CCK8. Cytoskeleton and living-cell staining, migration, CCK8 test, and neural differentiation assays were performed, revealing that SCF promoted the biological activity of DPSCs. Surprisingly, SCF increased the neural differentiation of DPSCs. The migration and angiogenesis experiments were carried out to show that SCF promoted the angiogenesis and migration of human umbilical vein endothelial cells (HUVECs). In the facial nerve, 7 mm defects of New Zealand white rabbits, hematoxylin-eosin (HE), immunohistochemistry, toluidine blue staining, and transmission electron microscopy observation were performed at 12 weeks postsurgery to show more nerve fibers and better myelin sheath in the SCF + DPSC group. In addition, the whisker movements, Masson's staining, and western blot assays were performed, demonstrating functional repair and that the expression level of CD31 protein in the group SCF + DPSCs was relatively close to that in the group Autograft. In summary, chitosan tubes inoculated with SCF and DPSCs increased neurovascularization and provided an effective method for repairing facial nerve defects, indicating great promise for clinical application.
Collapse
Affiliation(s)
- Xiaodan Mu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Huawei Liu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuhui Yang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yongfeng Li
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Xiang
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Hu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Mu X, Shi L, Pan S, He L, Niu Y, Wang X. A Customized Self-Assembling Peptide Hydrogel-Wrapped Stem Cell Factor Targeting Pulp Regeneration Rich in Vascular-Like Structures. ACS OMEGA 2020; 5:16568-16574. [PMID: 32685822 PMCID: PMC7364552 DOI: 10.1021/acsomega.0c01266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
Pulp regeneration is to replace the inflamed/necrotic pulp tissue with regenerated pulp-like tissue to rejuvenate the teeth. Self-assembling peptide hydrogels RADA16-I (Ac-(RADA16-I)4-CONH2) can provide a three-dimensional environment for cells. The stem cell factor (SCF) plays a crucial role in homing stem cells. Combining these advantages, our study investigated the effects of SCF-RADA16-I on adhesion, proliferation, and migration of human dental pulp stem cells (DPSCs) and the angiogenesis of human umbilical vein endothelial cells (HUVECs). The β-sheet and grid structure were observed by circular dichroism (CD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Cytoskeleton staining, living cell staining, cell viability, cell migration, angiogenesis, and western blot assays were performed, and the results indicated that all the SCF groups were superior to the corresponding non-SCF groups in cell adhesion, proliferation, migration, and angiogenesis. RADA16-I provided a three-dimensional environment for DPSCs. Besides, the SCF promoted HUVECs to form more vascular-like structures and release more vascular endothelial growth factor A. In summary, the SCF-loaded RADA16-I scaffold improved adhesion, proliferation, and migration of DPSCs and the formation of more vascular-like structures of HUVECs. SCF-RADA16-I holds promise for guided pulp regeneration, and it can potentially be applied widely in tissue engineering and translational medicine in the future.
Collapse
Affiliation(s)
- Xiaodan Mu
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Lei Shi
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Shuang Pan
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Lina He
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Yumei Niu
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| |
Collapse
|
3
|
He XT, Wang J, Li X, Yin Y, Sun HH, Chen FM. The Critical Role of Cell Homing in Cytotherapeutics and Regenerative Medicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao-Tao He
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Jia Wang
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Hai-Hua Sun
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| |
Collapse
|
4
|
Feyen DAM, Gaetani R, Deddens J, van Keulen D, van Opbergen C, Poldervaart M, Alblas J, Chamuleau S, van Laake LW, Doevendans PA, Sluijter JPG. Gelatin Microspheres as Vehicle for Cardiac Progenitor Cells Delivery to the Myocardium. Adv Healthc Mater 2016; 5:1071-9. [PMID: 26913710 DOI: 10.1002/adhm.201500861] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Inadequate cell retention and survival in cardiac stem cell therapy seems to be reducing the therapeutic effect of the injected stem cells. In order to ameliorate their regenerative effects, various biomaterials are being investigated for their potential supportive properties. Here, gelatin microspheres (MS) are utilized as microcarriers to improve the delivery and therapeutic efficacy of cardiac progenitor cells (CPCs) in the ischemic myocardium. The gelatin MS, generated from a water-in-oil emulsion, are able to accommodate the attachment of CPCs, thereby maintaining their cardiogenic potential. In a mouse model of myocardial infarction, we demonstrated the ability of these microcarriers to substantially enhance cell engraftment in the myocardium as indicated by bioluminescent imaging and histological analysis. However, despite an observed tenfold increase in CPC numbers in the myocardium, echocardiography, and histology reveals that mice treated with MS-CPCs show marginal improvement in cardiac function compared to CPCs only. Overall, a straightforward and translational approach is developed to increase the retention of stem cells in the ischemic myocardium. Even though the current biomaterial setup with CPCs as cell source does not translate into improved therapeutic action, coupling this developed technology with stem cell-derived cardiomyocytes can lead to an effective remuscularization therapy.
Collapse
Affiliation(s)
- Dries A. M. Feyen
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Roberto Gaetani
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
- Department of Molecular Medicine; Cenci-Bolognetti Foundation; Pasteur Institute; “Sapienza” University of Rome; 00161 Rome Italy
| | - Janine Deddens
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Danielle van Keulen
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Chantal van Opbergen
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Michelle Poldervaart
- Department of Orthopedics; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Steven Chamuleau
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Linda W. van Laake
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN); Utrecht 3511 EP The Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN); Utrecht 3511 EP The Netherlands
- Department of Cardiology; DH&L; University Medical Center Utrecht; Experimental Cardiology Laboratory; Heidelberglaan 100, Room G03.642 Utrecht 3584 CX The Netherlands
| |
Collapse
|
5
|
In-vitro Behavior of Human Umbilical Cord Blood Stem Cells Towards Serum Based Minimal Cytokine Growth Conditions. Indian J Clin Biochem 2014; 29:279-89. [PMID: 24966475 DOI: 10.1007/s12291-013-0346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
We tried here to optimize the proliferation of both Hematopoietic and Mesenchymal stem cells of Umbilical Cord blood in minimal cytokine growth condition. Failing to get good results of expansion of non-adherent Hematopoietic Total Nucleated Cells and adherent Fibroblastic Mesenchymal Stem Cells derived from 10-12 ml of collected Cord blood, we designed the further experimental study by increasing the volume of Cord blood sample up to 65-70 ml. We harvested the non-adherent as well as adherent fraction separately derived from the primary culture of Umbilical Cord blood stem cells under the influence of growth promoting Cytokines or Growth Factors. The proliferation study was conducted by taking different combinations of two hematopoietic growth stimulatory Cytokines like stem cell factor (SCF) and Fms like tyrosine kinase-3Ligand (Flt3L) at concentrations (10 ng/ml, 100 ng/ml) while we preferred Mesenchymal specific growth factor i.e. basic Fibroblast growth factor (FGF-β) at its 10 ng/ml concentration for adherent cells to get optimal results. The Hematopoietic and Fibroblast Colony forming abilities of the expanded stem cells were performed through Colony Forming Unit assay. Culture Medium containing cytokine combination like SCF 100 ng/ml with Flt3L 10 ng/ml was found to be optimal for the proliferation of hematopoietic stem cells. But the number of hematopoietic colonies like Erythroid colonies generated were less in case of media supplemented with SCF & Flt3L while more number of Myeloid colonies were observed in Growth factor supplemented media in comparison to the control one. The FGF-β supplemented media successfully enhanced the proliferation of Mesenchymal Stem Cells and exhibited its efficient Fibroblast colony forming ability. Our experimental study supports the minimal utilization of cytokines for haematopoietic and mesenchymal stem cell proliferation which may help in future safe Cord blood stem cell infusion.
Collapse
|
6
|
Differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol 2014; 51:791-807. [DOI: 10.1007/s12035-014-8716-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023]
|
7
|
Park SK, Won JH. Usefulness of umbilical cord blood cells in era of hematopoiesis research. Int J Stem Cells 2014; 2:90-6. [PMID: 24855526 DOI: 10.15283/ijsc.2009.2.2.90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2009] [Indexed: 12/31/2022] Open
Abstract
Although worldwide experience with umbilical cord blood (UCB) transplantation is still relatively limited, clinical experience with UCB transplantation is encouraging. The use of UCB for hematopoietic stem cell transplantation (HSCT) has advantages and disadvantages. Among the advantages are rapid availability, ability to more rapidly schedule the transplant as the UCB units are stored and ready for use, the apparent reduced need for an exact human leukocyte antigen (HLA) match, and induction of a less severe graft versus host disease (GVHD) compared with bone marrow. The major limitation of reduced numbers of hematopoietic stem cells (HSC) in UCB is being addressed by basic research. It is promising that potential improvements in engraftment efficiency without increased stem cell numbers or actual increased stem cell numbers through dual UCB transplant or ex-vivo expansion might lead to improved treatment approaches. However, its therapeutic potential extends beyond the hematopoietic component suggesting regenerative potential in solid organs as well. Many different stem and progenitor cell populations have been postulated with potential ranging from embryonic like to lineage-committed progenitor cells. UCB derived MSCs have the differentiation capacity and also the therapeutic potential with regard to regenerative medicine, stromal support, immune modulation and gene therapy. Therefore, further advances are eagerly anticipated.
Collapse
Affiliation(s)
- Seong-Kyu Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jong-Ho Won
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: an overview. Mutat Res 2013; 753:7-23. [PMID: 23370482 DOI: 10.1016/j.mrrev.2013.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinase (MMP) comprises a family of zinc-dependent endopeptidases that degrade various components of the extracellular matrix (ECM) and basement membrane. MMPs are involved in solid and hematological malignancy through modification of cell growth, activation of cancer cells and modulation of immune functions. Several polymorphisms of different MMPs such as MMP-1 (-1607 1G/2G), MMP-2 (-1306 C/T), MMP-3 (-1171 5A/6A) & MMP-9 (-1562 C/T) and their expression levels have been well documented in different types of solid cancer. These polymorphic variations were found to be associated with angiogenesis, cancer progression, invasion and metastasis. There is paucity of data available in the field of hematological malignancies. Hence the field of matrix biology of hematological malignancies is an area of active exploration. A number of MMP inhibitors (MMPIs) have been developed for the cancer treatment. The most extensively studied classes of MMP inhibitors include Batimastat, Marismastat, Salimatat, Prinomastat and Tanomastat. However, their efficacy and action have not been confirmed and more data is required. The application of one or more selective targeted MMPIs in combination with conventional anti-leukemic treatment may represent a positive approach in combat against hematopoietic malignancies. Balance of MMPs and TIMPs is altered in different malignancies and biochemical pathways. These alternations will add another dimension in the matrix biology of both solid tumor and leukemia. MMP and TIMP singly and in combination are increasingly being recognized as an important player in basic cellular biology. Exploration and exploitation of MMP and TIMP balance in various malignant and nonmalignant lesions is going to be one of the most interesting facets of future use of this system for human health care.
Collapse
|
9
|
Nishioka C, Ikezoe T, Furihata M, Yang J, Serada S, Naka T, Nobumoto A, Kataoka S, Tsuda M, Udaka K, Yokoyama A. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express CD82 which regulates adhesion and survival of leukemia stem cells. Int J Cancer 2012; 132:2006-19. [PMID: 23055153 DOI: 10.1002/ijc.27904] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/25/2012] [Indexed: 12/22/2022]
Abstract
To identify molecular targets in leukemia stem cells (LSCs), this study compared the protein expression profile of freshly isolated CD34(+) /CD38(-) cells with that of CD34(+) /CD38(+) counterparts from individuals with acute myelogenous leukemia (n = 2, AML) using isobaric tags for relative and absolute quantitation (iTRAQ). A total of 98 proteins were overexpressed, while six proteins were underexpressed in CD34(+) /CD38(-) AML cells compared with their CD34(+) /CD38(+) counterparts. Proteins overexpressed in CD34(+) /CD38(-) AML cells included a number of proteins involved in DNA repair, cell cycle arrest, gland differentiation, antiapoptosis, adhesion, and drug resistance. Aberrant expression of CD82, a family of adhesion molecules, in CD34(+) /CD38(-) AML cells was noted in additional clinical samples (n = 12) by flow cytometry. Importantly, down-regulation of CD82 in CD34(+) /CD38(-) AML cells by a short hairpin RNA (shRNA) inhibited adhesion to fibronectin via up-regulation of matrix metalloproteinases 9 (MMP9) and colony forming ability of these cells as assessed by transwell assay, real-time RT-PCR, and colony forming assay, respectively. Moreover, we found that down-regulation of CD82 in CD34(+) /CD38(-) AML cells by an shRNA significantly impaired engraftment of these cells in severely immunocompromised mice. Taken together, aberrant expression of CD82 might play a role in adhesion of LSCs to bone marrow microenvironment and survival of LSCs. CD82 could be an attractive molecular target to eradicate LSCs.
Collapse
Affiliation(s)
- Chie Nishioka
- Department of Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Singh AK, Kashyap MP, Jahan S, Kumar V, Tripathi VK, Siddiqui MA, Yadav S, Khanna VK, Das V, Jain SK, Pant AB. Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34(+) stem cell-derived differentiating neuronal cells. Toxicol Sci 2012; 129:392-410. [PMID: 22733800 DOI: 10.1093/toxsci/kfs213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The status of xenobiotic metabolism in developing human brain cells is not known. The reason is nonavailability of developing human fetal brain. We investigate the applicability of the plasticity potential of human umbilical cord blood stem cells for the purpose. Characterized hematopoietic stem cells are converted into neuronal subtypes in eight days. The expression and substrate-specific catalytic activity of the cytochrome P450s (CYPs) CYP1A1 and 3A4 increased gradually till day 8 of differentiation, whereas CYP2B6 and CYP2E1 showed highest expression and activity at day 4. There was no significant increase in the expression of CYP regulators, namely, aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and glutathione-S-transferase (GSTP1-1) during differentiation. Differentiating cells showed significant induction in the expression of CYP1A1, 2B6, 2E1, 3A4, AHR, CAR, PXR, and GSTP1-1 when exposed to rifampin, a known universal inducer of CYPs. The xenobiotic-metabolizing capabilities of these differentiating cells were confirmed by exposing them to the organophosphate pesticide monocrotophos (MCP), a known developmental neurotoxicant, in the presence and absence of a universal inhibitor of CYPs-cimetidine. Early-differentiating cells (day 2) were found to be more vulnerable to xenobiotics than mature well-differentiated cells. For the first time, we report significant expression and catalytic activity of selected CYPs in human cord blood hematopoietic stem cell-derived neuronal cells at various stages of maturity. We also confirm significant induction in the expression and catalytic activity of selected CYPs in human cord blood stem cell-derived differentiating neuronal cells exposed to known CYP inducers and MCP.
Collapse
Affiliation(s)
- Abhishek K Singh
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nishino T, Osawa M, Iwama A. New approaches to expand hematopoietic stem and progenitor cells. Expert Opin Biol Ther 2012; 12:743-56. [DOI: 10.1517/14712598.2012.681372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI) is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1) improved identification, recruitment, and expansion of autologous stem cells; (2) identification of mobilizing and homing agents that increase recruitment; and (3) development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.
Collapse
Affiliation(s)
- Jane Hoover-Plow
- Departmentof Cardiovascular Medicine, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| | | |
Collapse
|
13
|
Protein kinase B (PKB/c-akt) regulates homing of hematopoietic progenitors through modulation of their adhesive and migratory properties. Blood 2010; 116:2373-84. [PMID: 20566894 DOI: 10.1182/blood-2009-10-250258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Limited number of hematopoietic stem cells in umbilical cord blood (UCB) presents a problem when using UCB for stem cell transplantation. Improving their homing capacity could reduce the need for high initial cell numbers during transplantation procedures. Although it is evident that protein kinase B (PKB/c-Akt) plays an important role in regulation of migration of various cell types, a role for PKB in regulation of migration and homing of human hematopoietic stem and progenitor cells remains to be determined. PKB activity was found to be required for induction of adhesion to bone marrow-derived stromal cells and detrimental for migration of UCB-derived CD34(+) hematopoietic progenitors. In addition, PKB activity was found to positively regulate integrin expression. CD34(+) hematopoietic progenitors, and their capacity to form colonies in vitro, were not affected by transient inhibition of PKB. Finally, transplantation of β2-microglobulin(-/-) nonobese diabetic/severe combined immunodeficient mice with CD34(+) cells ectopically expressing constitutively active PKB resulted in reduced migration to the bone marrow, whereas inhibition of PKB activity resulted in an induction in bone marrow homing and engraftment. These results indicate that transient inhibition of PKB activity may provide a means for ex vivo stem cell manipulation to improve bone marrow transplantation regimes.
Collapse
|
14
|
Transplantation of human hematopoietic repopulating cells: mechanisms of regeneration and differentiation using human???mouse xenografts. Curr Opin Organ Transplant 2008; 13:44-52. [DOI: 10.1097/mot.0b013e3282f42486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Abstract
There is a growing need for effective animal models to carry out experimental studies on human hematopoietic and immune systems without putting individuals at risk. Progress in development of small animal models for the in vivo investigation of human hematopoiesis and immunity has seen three major breakthroughs over the last three decades. First, CB 17-Prkdc(scid) (abbreviated CB 17-scid) mice were discovered in 1983, and engraftment of these mice with human fetal tissues (SCID-Hu model) and peripheral blood mononuclear cells (Hu-PBL-SCID model) was reported in 1988. Second, NOD-scid mice were developed and their enhanced ability to engraft with human hematolymphoid tissues as compared with CB17-scid mice was reported in 1995. NOD-scid mice have been the "gold standard" for studies of human hematolymphoid engraftment in small animal models over the last 10 years. Third, immunodeficient mice bearing a targeted mutation in the IL-2 receptor common gamma chain (IL2rgamma(null)) were developed independently by four groups between 2002 and 2005, and a major increase in the engraftment and function of human hematolymphoid cells as compared with NOD-scid mice has been reported. These new strains of immunodeficient IL2rgamma(null) mice are now being used for studies in human hematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology, and regenerative medicine. In this chapter, we discuss the current state of development of these strains of mice, the remaining deficiencies, and how approaches used to increase the engraftment and function of human hematolymphoid cells in CB 17-scid mice and in previous models based on NOD-scid mice may enhance human hematolymphoid engraftment and function in NOD-scid IL2rgamma(null) mice.
Collapse
|
16
|
Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007; 39:11-23. [PMID: 17164824 DOI: 10.1038/sj.bmt.1705538] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Umbilical cord blood transplantation (UCBT) in adults is limited by the small number of primitive hematopoietic stem cells (HSC) in each graft, resulting in delayed engraftment post transplant, and both short- and long-term infectious complications. Initial efforts to expand UCB progenitors ex vivo have resulted in expansion of mature rather than immature HSC, confounded by the inability to accurately and reliably measure long-term reconstituting cells. Ex vivo expansion of UCB HSC has failed to improve engraftment because of resulting defects that promote apoptosis, disrupt marrow homing and initiate cell cycling. Here we discuss the future of ex vivo expansion, which we suggest will include the isolation of immature hematopoietic progenitors on the basis of function rather than surface phenotype and will employ both cytokines and stroma to maintain and expand the stem cell niche. We suggest that ex vivo expansion could be enhanced by manipulating newly discovered signaling pathways (Notch, Wnt, bone morphogenetic protein 4 and Tie2/angiopoietin-1) and intracellular mediators (phosphatase and tensin homolog and glycogen synthase kinase-3) in a manner that promotes HSC expansion with less differentiation. Improved methods for ex vivo expansion will make UCBT available to more patients, decrease engraftment times and allow more rapid immune reconstitution post transplant.
Collapse
Affiliation(s)
- C C Hofmeister
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
17
|
van Hensbergen Y, Schipper LF, Brand A, Slot MC, Welling M, Nauta AJ, Fibbe WE. Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model. Exp Hematol 2006; 34:943-950. [PMID: 16797422 DOI: 10.1016/j.exphem.2006.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Hematopoietic recovery, in particular platelet reconstitution, can be severely delayed after transplantation with cord blood (CB) stem cells (SC). Expansion of CB SC may be one way to improve the recovery, but there is concern that ex vivo expansion compromises the repopulating ability of SC. METHODS We used a short-term expansion protocol with TPO as single growth factor. The expanded cells were tested in the NOD/SCID mouse model and both platelet recovery and repopulation capacity were examined and compared with unexpanded CD34+ CB cells of the same CB donor. RESULTS Platelet recovery started 1 week earlier in mice transplanted with TPO-expanded CD34+ cells and at days 5 and 8 after transplantation, 6.2 +/- 2.6 and 13.9 +/- 6.7 plt/microL were observed, respectively. At similar time intervals 0.0 and 1.5 +/- 0.2 plt/microL respectively were detected in mice receiving the unmanipulated CD34+ grafts. This was accompanied by a higher number of CFU-Mk in the bone marrow (BM) 7 days after transplantation. Moreover, the BM engraftment and the lineage differentiation of human cells at 6 weeks after transplantation was similar, suggesting that long-term engraftment was not compromised by the expansion procedure. CONCLUSION Ex vivo expansion with TPO as single growth factor results in an accelerated platelet recovery in NOD/SCID mice and appears not to affect the long-term repopulation capacity.
Collapse
|
18
|
Current World Literature. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000218938.96009.b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Hall KM, Horvath TL, Abonour R, Cornetta K, Srour EF. Decreased homing of retrovirally transduced human bone marrow CD34+ cells in the NOD/SCID mouse model. Exp Hematol 2006; 34:433-42. [PMID: 16569590 DOI: 10.1016/j.exphem.2005.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Many clinical gene therapy trials have described poor engraftment of retrovirally transduced CD34(+) cells. Because engraftment is dependent upon successful homing of graft cells to the bone marrow (BM), we examined whether retroviral-mediated gene transfer (RMGT) induces a homing defect in CD34(+) cells. METHODS Homing of fluorescently labeled human BM CD34(+) cells transduced with three separate retroviral vectors (MFG-eGFP, LNC-eGFP, and LXSN) was assessed in nonobese diabetic/severe combined immunodeficient mice. RESULTS Homing of transduced CD34(+) cells was significantly decreased 20 hours after transplantation compared with freshly isolated control and cultured untransduced control cells. Specifically, homing of GFP(+) cells in the graft was preferentially decreased thus skewing the contribution of transduced cells to engraftment. Transduced cells were not selectively trapped in other organs and BM-homed transduced cells did not undergo apoptosis at a higher rate than untransduced cells. Adhesion molecule expression and binding activity was not altered by RMGT. This homing defect was reversed when transduced cells were cultured over CH-296 for 2 additional days with SCF only. CONCLUSION These data suggest that RMGT of hematopoietic cells may compromise their homing potential and implicate transduction-induced reduced homing in the observed low engraftment of retrovirally transduced CD34(+) cells. These results may have a direct clinical application in gene therapy protocols.
Collapse
Affiliation(s)
- Kristin M Hall
- Department of Microbiology and Immunology, Division of Hematology/Oncology, Indian University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Migration of hematopoietic stem cells through the blood, across the endothelial vasculature to different organs and to their bone marrow (BM) niches, requires active navigation, a process termed homing. Homing is a rapid process and is the first and essential step in clinical stem cell transplantation. Similarly, homing is required for seeding of the fetal BM by hematopoietic progenitors during development. Homing has physiological roles in adult BM homeostasis, which are amplified during stress-induced recruitment of leukocytes from the BM reservoir and during stem cell mobilization, as part of host defense and repair. Homing is thought to be a coordinated, multistep process, which involves signaling by stromal-derived factor 1 (SDF-1) and stem cell factor (SCF), activation of lymphocyte function-associated antigen 1 (LFA-1), very late antigen 4/5 (VLA-4/5) and CD44, cytoskeleton rearrangement, membrane type 1 (MT1)-matrix metalloproteinase (MMP) activation and secretion of MMP2/9. Rolling and firm adhesion of progenitors to endothelial cells in small marrow sinusoids under blood flow is followed by trans-endothelial migration across the physical endothelium/extracellular matrix (ECM) barrier. Stem cells finalize their homing uniquely, by selective access and anchorage to their specialized niches in the extravascular space of the endosteum region and in periarterial sites. This review is focused on mechanisms and key regulators of human stem cell homing to the BM in experimental animal models and clinical transplantation protocols.
Collapse
Affiliation(s)
- Tsvee Lapidot
- Weizmann Institute of Science, Department of Immunology, PO Box 26, Rehovot, 76100, Israel.
| | | | | |
Collapse
|