1
|
Schober S, Döring M, Lang P, Schulte J, Olivieri M, Icheva V. Hematopoietic stem cell transplantation in a newborn suffering from severe combined immunodeficiency and severe hemophilia A: a case report and review of the literature. Res Pract Thromb Haemost 2025; 9:102842. [PMID: 40337622 PMCID: PMC12056251 DOI: 10.1016/j.rpth.2025.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 05/09/2025] Open
Abstract
Background Severe combined immunodeficiency (SCID) and severe hemophilia A are 2 rare and potentially life-threatening congenital diseases. The coincidence of these diseases has not been reported so far. Key Clinical Question We present the first case of a newborn with both diseases. SCID can be treated with hematopoietic stem cell transplantation (HSCT). However, how to successfully manage a newborn with severe hemophilia A during intensive HSCT treatment is the key clinical question of this case report. Clinical Approach Prophylactic factor (F)VIII substitution during HSCT was performed with an extended half-life FVIII product (efmoroctocog alfa). The platelet count was a major factor influencing the dosage of FVIII. No bleeding complications or FVIII inhibitors occurred during this individualized management. Conclusion This is the first case report of a newborn suffering from both SCID and severe hemophilia A. HSCT is feasible in this situation without bleeding complications if an individual substitution regimen with FVIII is applied.
Collapse
Affiliation(s)
- Sarah Schober
- Department I–Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Michaela Döring
- Department I–Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department I–Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Johannes Schulte
- Department I–Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Martin Olivieri
- Paediatric Thrombosis and Haemostasis Unit, Paediatric Haemophilia Center, Dr. von Hauner Children’s Hospital, Ludwig Maximilian University Clinic, Munich, Germany
| | - Vanya Icheva
- Department II–Paediatric Cardiology, Intensive Care Medicine and Pulmonology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Chattopadhyay D, Abraham A, George B. Successful Hematopoietic Stem Cell Transplantation in a Child with Thalassemia major and Moderate Haemophilia A. Indian J Hematol Blood Transfus 2024; 40:543-544. [PMID: 39011271 PMCID: PMC11246387 DOI: 10.1007/s12288-024-01751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/08/2024] [Indexed: 07/17/2024] Open
Affiliation(s)
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|
3
|
Takakura N. Discovery of a Vascular Endothelial Stem Cell (VESC) Population Required for Vascular Regeneration and Tissue Maintenance. Circ J 2018; 83:12-17. [PMID: 30487375 DOI: 10.1253/circj.cj-18-1180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The roles that blood vessels play in the maintenance of organs and tissues in addition to the delivery of oxygen and nutrients are being gradually clarified. The maintenance of tissue-specific organ stem cells, such as hematopoietic and neuronal stem cells, is supported by endothelial cells (ECs), which represent an important component of the stem cell niche. The maintenance of organogenesis, for example, osteogenesis and liver generation/regeneration, is supported by molecules referred to as "angiocrine signals" secreted by EC. The mechanisms responsible for the well-known functions of blood vessels, such as thermoregulation and metabolism, especially removal of local metabolites, have now been determined at the molecular level. Following the development of single-cell genetic analysis, blood cell heterogeneity, especially of mural cell populations, has been established and tissue-specific blood vessel formation and function are now also understood at the molecular level. Among the heterogeneous populations of ECs, it seems that a stem cell population with the ability to maintain the production of ECs long-term is present in pre-existing blood vessels. Neovascularization by therapeutic angiogenesis yields benefits in many diseases, not only ischemic disease but also metabolic disease and other vascular diseases. Therefore, vascular endothelial stem cells should be considered to use in vascular regeneration therapy.
Collapse
Affiliation(s)
- Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Deseases, Osaka University
| |
Collapse
|
4
|
Arruda VR. The search for the origin of factor VIII synthesis and its impact on therapeutic strategies for hemophilia A. Haematologica 2016; 100:849-50. [PMID: 26130509 DOI: 10.3324/haematol.2015.129858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Valder R Arruda
- The Children's Hospital of Philadelphia, Center for Cell and Molecular Therapeutics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| |
Collapse
|
5
|
Zanolini D, Merlin S, Feola M, Ranaldo G, Amoruso A, Gaidano G, Zaffaroni M, Ferrero A, Brunelleschi S, Valente G, Gupta S, Prat M, Follenzi A. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A. Haematologica 2015; 100:881-92. [PMID: 25911555 DOI: 10.3324/haematol.2014.123117] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/22/2015] [Indexed: 12/14/2022] Open
Abstract
A large fraction of factor VIII in blood originates from liver sinusoidal endothelial cells although extrahepatic sources also contribute to plasma factor VIII levels. Identification of cell-types other than endothelial cells with the capacity to synthesize and release factor VIII will be helpful for therapeutic approaches in hemophilia A. Recent cell therapy and bone marrow transplantation studies indicated that Küpffer cells, monocytes and mesenchymal stromal cells could synthesize factor VIII in sufficient amount to ameliorate the bleeding phenotype in hemophilic mice. To further establish the role of blood cells in expressing factor VIII, we studied various types of mouse and human hematopoietic cells. We identified factor VIII in cells isolated from peripheral and cord blood, as well as bone marrow. Co-staining for cell type-specific markers verified that factor VIII was expressed in monocytes, macrophages and megakaryocytes. We additionally verified that factor VIII was expressed in liver sinusoidal endothelial cells and endothelial cells elsewhere, e.g., in the spleen, lungs and kidneys. Factor VIII was well expressed in sinusoidal endothelial cells and Küpffer cells isolated from human liver, whereas by comparison isolated human hepatocytes expressed factor VIII at very low levels. After transplantation of CD34(+) human cord blood cells into NOD/SCIDγNull-hemophilia A mice, fluorescence activated cell sorting of peripheral blood showed >40% donor cells engrafted in the majority of mice. In these animals, plasma factor VIII activity 12 weeks after cell transplantation was up to 5% and nine of 12 mice survived after a tail clip-assay. In conclusion, hematopoietic cells, in addition to endothelial cells, express and secrete factor VIII: this information should offer further opportunities for understanding mechanisms of factor VIII synthesis and replenishment.
Collapse
Affiliation(s)
- Diego Zanolini
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Simone Merlin
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Maria Feola
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Gabriella Ranaldo
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Angela Amoruso
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Gianluca Gaidano
- Dept. of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mauro Zaffaroni
- Azienda Ospedaliera Universitaria Maggiore della Carità, SCDU Pediatria, Novara, Italy
| | - Alessandro Ferrero
- Azienda Ospedaliera Mauriziano, SC Chirurgia Generale ed Oncologica, Torino, Italy
| | - Sandra Brunelleschi
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Guido Valente
- Dept. of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Sanjeev Gupta
- Dept. of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Prat
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Antonia Follenzi
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
6
|
Abstract
The primary cellular source of factor VIII (FVIII) biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors reduced to ~10% to 15% of normal in human patients. We generated Lman1 conditional knockout mice to characterize the FVIII secretion profiles of endothelial cells and hepatocytes. We demonstrate that endothelial cells are the primary biosynthetic source of murine FVIII and that hepatocytes make no significant contribution to the plasma FVIII pool. Utilizing RiboTag mice and polyribosome immunoprecipitation, we performed endothelial cell-specific messenger RNA isolation and quantitative polymerase chain reaction analyses to confirm that endothelial cells highly express F8 and to explore the heterogeneity of F8 expression in different vascular beds. We demonstrate that endothelial cells from multiple, but not all, tissues contribute to the plasma FVIII pool in the mouse.
Collapse
|
7
|
A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 2014; 123:3706-13. [PMID: 24705491 DOI: 10.1182/blood-2014-02-555151] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cellular source of coagulation factor VIII (FVIII) remains controversial. Like many coagulation proteins, FVIII is produced in the liver, and FVIII synthesis has long been associated with hepatocytes. But extrahepatic synthesis also occurs, and mounting evidence suggests that hepatocytes are not responsible for FVIII production. To determine the tissue that synthesizes FVIII, we developed a Cre/lox-dependent conditional knockout (KO) model in which exons 17 and 18 of the murine factor VIII gene (F8) are flanked by loxP sites, or floxed (F8(F)). In cells expressing Cre-recombinase, the floxed sequence is deleted, resulting in F8(F→KO) gene inactivation. When F8(F) mice were crossed with various tissue-specific Cre strains, we found that hepatocyte-specific F8-KO mice are indistinguishable from controls, whereas efficient endothelial-KO models display a severe hemophilic phenotype with no detectable plasma FVIII activity. A hematopoietic Cre model was more equivocal, so experimental bone marrow transplantation was used to examine hematopoietic FVIII synthesis. FVIII(null) mice that received bone marrow transplants from wild-type donors were still devoid of plasma FVIII activity after hematopoietic donor cell engraftment. Our results indicate that endothelial cells are the predominant, and possibly exclusive, source of plasma FVIII.
Collapse
|
8
|
A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood 2013; 122:2562-71. [PMID: 23982175 DOI: 10.1182/blood-2012-08-447458] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Analysis of hematopoietic stem cells (HSCs) in factor VIII knockout (FVIIIKO) mice revealed a novel regulatory role for the coagulation cascade in hematopoiesis. Thus, HSCs in FVIIIKO mice had reduced proportions of CD34(low) cells within Lin(-)Sca(+)Kit(+) progenitors, and exhibited reduced long-term repopulating capacity as well as hyper granulocyte-colony-stimulating factor (G-CSF)-induced mobilization. This disregulation of HSCs is likely caused by reduced levels of thrombin, and is associated with altered protease-activated receptor 1 (PAR1) signaling, as PAR1 KO mice also exhibited enhanced G-CSF-induced mobilization. Analysis of reciprocal bone marrow (BM) chimera (FVIIIKO BM into wild-type recipients and vice versa) and the detection of PAR1 expression on stromal elements indicates that this phenotype is likely controlled by stromal elements. Micro-computed tomography analysis of distal tibia metaphyses also revealed for the first time a major impact of the FVIII/thrombin/PAR1 axis on the dynamic bone structure, showing reduced bone:tissue volume ratio and trabecular number in FVIIIKO and PAR1KO mice. Taken together, these results show a critical and novel role for the coagulation cascade, mediated in part by thrombin-PAR1 interaction, and regulates HSC maintenance and a reciprocal interplay between HSCs and the dynamic bone structure.
Collapse
|
9
|
Buchbinder D, Steward CG, Puthenveetil G, Nugent D, Hsieh L, Kirov I, Neudorf S, Soni A. Successful cord blood transplantation in a patient with malignant infantile osteopetrosis and hemophilia. Pediatr Transplant 2013; 17:E20-4. [PMID: 22913475 DOI: 10.1111/j.1399-3046.2012.01758.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MIOP is a congenital disorder of osteoclast differentiation or dysfunction. Inadequate bone resorption by osteoclasts results in a spectrum of complications including hypocalcemia, osteosclerosis, marrow failure, extramedullary hematopoiesis, hydrocephalus, visual deficits, and eventual mortality. Early diagnosis and timely HCT is a recommended treatment approach for select patients prior to the development of end-organ damage. A comorbid bleeding disorder presents a unique challenge in the setting of MIOP and cord blood HCT given the additional risk factors for bleeding including delayed engraftment, a high risk of developing sinusoidal obstruction syndrome, and potential need for emergent invasive procedures. To our knowledge, this is the first report of a patient with an autosomal recessive form of MIOP who successfully underwent a cord blood HCT complicated by the presence of mild hemophilia A and HCT-related complications including delayed engraftment, sinusoidal obstruction syndrome, and need for multiple invasive procedures (e.g., ventriculostomy, tracheostomy) without clinically significant bleeding. Given the underlying diagnosis of MIOP and need for HCT, the challenge of mitigating the significant risk of bleeding in a patient with a comorbid bleeding disorder is discussed.
Collapse
Affiliation(s)
- David Buchbinder
- Division of Hematology, CHOC Children's Hospital, Orange, CA 92868, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)-derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A.
Collapse
|
11
|
Caselli D, Morfini M, Paolicchi O, Frenos S, Casini T, Aricò M. Cord blood hematopoietic stem cell transplantation in an adolescent with haemophilia. Haemophilia 2012; 18:e48-9. [PMID: 22226228 DOI: 10.1111/j.1365-2516.2011.02734.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|