1
|
Melino G, Knight RA, Mak TW, Piacentini M, Simon HU, Shi Y. The birth of death, 30 years ago. Cell Death Differ 2024; 31:379-386. [PMID: 38600322 PMCID: PMC11043065 DOI: 10.1038/s41418-024-01276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy.
| | - Richard A Knight
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- Department of Pathology, University of Hong Kong, Hong Kong, Pok Fu Lam, 999077, Hong Kong
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2015; 5:7988-8013. [PMID: 25237759 PMCID: PMC4226663 DOI: 10.18632/oncotarget.2431] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Collapse
Affiliation(s)
- Vivien Landré
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Sonia Melino
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, UK. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
3
|
Moiseeva TN, Bottrill A, Melino G, Barlev NA. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 2014; 4:1338-48. [PMID: 23907514 PMCID: PMC3824523 DOI: 10.18632/oncotarget.1060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stability of proteins is largely controlled by post-translational covalent modifications. Among those, ubiquitylation plays a central role as it marks the proteins for proteasome-dependent degradation. Proteolytic activities of proteasomes are critical for execution of various cellular processes, including DNA damage signaling and repair. However, very little is known about the regulation of proteasomal activity in cells during genotoxic stress. Here we investigated post-translational modifications of the 20S proteasomal subunits upon DNA damage induced by doxorubicin. Using mass-spectrometry, we found novel sites of phosphorylation and ubiquitylation in multiple proteasome subunits upon doxorubicin treatment. Ectopic co-expression of proteasome subunits and tagged ubiquitin confirmed the presence of ubiquitylated forms of PSMA5, PSMA1, PSMA3 and PSMB5 in cells. Moreover, we demonstrated that ubiquitylation in vitro inhibited chymotrypsin-like and caspase-like activities of proteasomes. In vivo, doxorubicin increased the activity of proteasomes, paralleling with attenuation of the overall level of proteasome ubiquitylation. Collectively, our results suggest a novel mechanism whereby the proteolytic activities of proteasomes are dynamically regulated by ubiquitylation upon DNA damage.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | | | | | | |
Collapse
|
4
|
Proskuryakov SY, Gabai VL, Konoplyannikov AG, Zamulaeva IA, Kolesnikova AI. Immunology of Apoptosis and Necrosis. BIOCHEMISTRY (MOSCOW) 2005; 70:1310-20. [PMID: 16417452 DOI: 10.1007/s10541-005-0263-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A complex of reactions regulating the number of cells in organs and tissues under normal and pathologic conditions is one of the most important systems of multicellular organisms. In this system, which controls both cell proliferation and clearance, clearance has been given special attention during the last three decades. Some stages of the clearance are known (the choice of "unwanted" cells, their destruction not affecting the surrounding tissue, and, finally, removal of the corpses), and undeniable progress has been achieved in the understanding of the second stage mechanisms, whereas mechanisms of elimination per se of cells or their fragments still continue to be terra incognita. The clearance of such cells is mainly determined by different components of natural and adaptive immunity: phagocytes, complement, opsonins, antigen-presenting cells, etc. Recently specific "danger signals", such as hydrolases, DNA, heat shock proteins, and other potential immunogens released by cells during their elimination have been discovered. Entering the extracellular space, these signals induce inflammation and injury of the surrounding tissues, i.e., autoimmune reactions. Heat shock proteins, in addition to chaperon activity, act as signaling, costimulating, and antigen-carrying molecules in the interactions of dying cells and the immune system.
Collapse
Affiliation(s)
- S Ya Proskuryakov
- Medical Radiological Research Center, Russian Academy of Medical Sciences, Obninsk, 249036, Russia.
| | | | | | | | | |
Collapse
|
5
|
André N, Rome A, Carré M. [Antimitochondrial agents: a new class of anticancer agents]. Arch Pediatr 2005; 13:69-75. [PMID: 16298120 DOI: 10.1016/j.arcped.2005.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 10/01/2005] [Indexed: 11/15/2022]
Abstract
Over the last 2 decades, the role of apoptosis in anticancer agent cytotoxicity has become clear. Defects in the regulation of apoptosis (programmed cell death) make important contributions to the pathogenesis and progression of most cancers and leukemias. Apoptosis defects also have a key role in cell resistance to chemotherapy. Mitochondria play a central part in cell death in response to anticancer agents. Most of these agents target mitochondria via caspases or other regulator elements of the apoptotic machinery. Nevertheless, some anticancer agents, already in clinical use (paclitaxel, vinblastine, lonidamine, etoposide, arsenic trioxide) or in pre-clinical development (betulinic acid, MT21), directly target and permeabilize mitochondria. The acknowledgement of mitochondria as a new target for anticancer agents provides a new way to bypass cancer cell chemoresistance.
Collapse
Affiliation(s)
- N André
- Service d'oncologie pédiatrique, EA3286, hôpital pour enfants de la Timone, 13005 Marseille, France.
| | | | | |
Collapse
|
6
|
|
7
|
Abstract
Histological studies of ischaemic liver injury performed between 1962 and 1964 distinguished two types of cell death: classical necrosis, and a process involving conversion of scattered cells into small round masses of cytoplasm that often contained specks of condensed nuclear chromatin. Enzyme histochemistry demonstrated rupture of lysosomes in the former, but preservation of lysosomes in the latter. Similar small round masses were also observed sparsely in normal liver. Electron microscopy showed that the small round bodies resulted from cellular condensation and budding, that they were bounded by membranes and contained intact organelles, and that they were phagocytosed and digested by resident tissue cells, including epithelial cells. In work done in association with Jeffrey Searle, the process was found to occur spontaneously in a variety of malignant tumours and to be enhanced in squamous cell carcinomas of skin responding to radiotherapy. During 1971-1972, I collaborated with Andrew Wyllie and Alastair Currie while on sabbatical leave in Scotland. The newly defined type of cell death was shown to be regulated by hormones in the adrenal cortex and in breast carcinomas. Further, review of published electron micrographs of the cell death known to play an essential role in normal development revealed the same morphological pattern. We proposed that this distinctive phenomenon subserves a general homoeostatic function and suggested it be called apoptosis.
Collapse
Affiliation(s)
- John F R Kerr
- Department of Pathology, University of Queensland Medical School, Herston, Qld, 4006, Australia
| |
Collapse
|
8
|
Gorski S, Marra M. Programmed cell death takes flight: genetic and genomic approaches to gene discovery in Drosophila. Physiol Genomics 2002; 9:59-69. [PMID: 12006672 DOI: 10.1152/physiolgenomics.00114.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Programmed cell death (PCD) is an essential and wide-spread physiological process that results in the elimination of cells. Genes required to carry out this process have been identified, and many of these remain the subjects of intense investigation. Here, we describe PCD, its functions, and some of the consequences when it goes awry. We review PCD in the model system, the fruit fly, Drosophila melanogaster, with a particular emphasis on cell death gene discovery resulting from both genetics and genomics-based approaches.
Collapse
Affiliation(s)
- S Gorski
- Genome Sequence Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6.
| | | |
Collapse
|
9
|
|