1
|
Nehmé R, Fortier M, Létourneau M, Fuselier C, Granger Joly de Boissel P, Dumoulin A, Guérin B, Dumulon-Perreault V, Ait-Mohand S, Sarrhini O, Larda ST, Castellanos Villamizar Y, Bernier M, Porębska N, Opaliński Ł, Chatenet D, Doucet N, St-Pierre Y. Development of Galectin-7-Specific Nanobodies: Implications for Immunotherapy and Molecular Imaging in Cancer. J Med Chem 2025; 68:8484-8496. [PMID: 40208951 PMCID: PMC12035796 DOI: 10.1021/acs.jmedchem.5c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Galectins play significant roles in regulating immune responses, posing challenges for cancer immunotherapy. The development of galectin inhibitors has been limited by their high structural homology and the lack of noninvasive imaging tools to identify potential responsive patients. We developed 12 galectin-7-specific inhibitors using nanobodies (Nbs) and identified G7N8 as the lead Nb. G7N8 was conjugated with the NOTA chelator, labeled with copper-64 ([64Cu]Cu), and used as a radiotracer for PET imaging in a triple-negative breast cancer (TNBC) mouse model. Nbs demonstrated high affinity for galectin-7, with no binding activity for other galectins tested. The lead Nbs inhibited galectin-7 binding to T-cell glycoreceptors and reduced subsequent apoptosis. PET imaging with [64Cu]Cu-NOTA-G7N8 showed selective radiotracer accumulation at 20 h (P = 0.001). We developed galectin-7-specific Nbs that inhibit T-cell apoptosis and enable PET imaging of TNBC, providing novel tools for investigating immune regulation and enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Rita Nehmé
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | - Marlène Fortier
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | - Myriam Létourneau
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | - Camille Fuselier
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | | | - Alyssa Dumoulin
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | - Brigitte Guérin
- Department
of Medical Imaging and Radiation Sciences, Faculty of Medicine and
Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Véronique Dumulon-Perreault
- Sherbrooke
Molecular Imaging Center (CIMS)/Centre de Recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Samia Ait-Mohand
- Department
of Medical Imaging and Radiation Sciences, Faculty of Medicine and
Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Otman Sarrhini
- Sherbrooke
Molecular Imaging Center (CIMS)/Centre de Recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Sacha T. Larda
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | | | - Mighel Bernier
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | - Natalia Porębska
- Department
of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Łukasz Opaliński
- Department
of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, Wrocław 50-383, Poland
| | - David Chatenet
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | - Nicolas Doucet
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| | - Yves St-Pierre
- INRS—Centre
Armand-Frappier Santé Biotechnologie, Laval, Québec H7 V 1B7, Canada
| |
Collapse
|
2
|
Schattner M, Psaila B, Rabinovich GA. Shaping hematopoietic cell ecosystems through galectin-glycan interactions. Semin Immunol 2024; 74-75:101889. [PMID: 39405834 DOI: 10.1016/j.smim.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/18/2024]
Abstract
Hematopoiesis- the formation of blood cell components- continually replenishes the blood system during embryonic development and postnatal lifespans. This coordinated process requires the synchronized action of a broad range of cell surface associated proteins and soluble mediators, including growth factors, cytokines and lectins. Collectively, these mediators control cellular communication, signalling, commitment, proliferation, survival and differentiation. Here we discuss the role of galectins - an evolutionarily conserved family of glycan-binding proteins - in the establishment and dynamic remodelling of hematopoietic niches. We focus on the contribution of galectins to B and T lymphocyte development and selection, as well as studies highlighting the role of these proteins in myelopoiesis, with particular emphasis on erythropoiesis and megakaryopoiesis. Finally, we also highlight recent findings suggesting the role of galectin-1, a prototype member of this protein family, as a key pathogenic factor and therapeutic target in myelofibrosis. Through extracellular or intracellular mechanisms, galectins can influence the fate and function of distinct hematopoietic progenitors and fine-tune the final repertoire of blood cells, with critical implications in a wide range of physiologically vital processes including innate and adaptive immunity, immune tolerance programs, tissue repair, regeneration, angiogenesis, inflammation, coagulation and oxygen delivery. Additionally, positive or negative regulation of galectin-driven circuits may contribute to a broad range of blood cell disorders.
Collapse
Affiliation(s)
- Mirta Schattner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Ciudad de Buenos Aires 1425, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine and Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| |
Collapse
|
3
|
Yamaguchi M, Sera Y, Toga-Yamaguchi H, Kanegane H, Iguchi Y, Fujimura K. Knockdown of the Shwachman-Diamond syndrome gene, SBDS, induces galectin-1 expression and impairs cell growth. Int J Hematol 2024; 119:383-391. [PMID: 38240987 DOI: 10.1007/s12185-024-03709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 03/24/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The depletion of SBDS protein by RNA interference has been shown to cause inhibition of cell proliferation in several cell lines. However, the precise mechanism by which the loss of SBDS leads to inhibition of cell growth remains unknown. To evaluate the impaired growth of SBDS-knockdown cells, we analyzed Epstein-Barr virus-transformed lymphoblast cells (LCLs) derived from two patients with SDS (c. 183_184TA > CT and c. 258 + 2 T > C). After 3 days of culture, the growth of LCL-SDS cell lines was considerably less than that of control donor cells. By annealing control primer-based GeneFishing PCR screening, we found that galectin-1 (Gal-1) mRNA expression was elevated in LCL-SDS cells. Western blot analysis showed that the level of Gal-1 protein expression was also increased in LCL-SDS cells as well as in SBDS-knockdown 32Dcl3 murine myeloid cells. We confirmed that recombinant Gal-1 inhibited the proliferation of both LCL-control and LCL-SDS cells and induced apoptosis (as determined by annexin V-positive staining). These results suggest that the overexpression of Gal-1 contributes to abnormal cell growth in SBDS-deficient cells.
Collapse
Affiliation(s)
- Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan.
| | - Yukihiro Sera
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan
| | - Hanae Toga-Yamaguchi
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, BUnkyo-ku, Tokyo, 113-8519, Japan
| | - Yusuke Iguchi
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan
| | - Kingo Fujimura
- Department of Nursing, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153, Japan
| |
Collapse
|
4
|
Yu X, Qian J, Ding L, Yin S, Zhou L, Zheng S. Galectin-1: A Traditionally Immunosuppressive Protein Displays Context-Dependent Capacities. Int J Mol Sci 2023; 24:ijms24076501. [PMID: 37047471 PMCID: PMC10095249 DOI: 10.3390/ijms24076501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Galectin–Carbohydrate interactions are indispensable to pathogen recognition and immune response. Galectin-1, a ubiquitously expressed 14-kDa protein with an evolutionarily conserved β-galactoside binding site, translates glycoconjugate recognition into function. That galectin-1 is demonstrated to induce T cell apoptosis has led to substantial attention to the immunosuppressive properties of this protein, such as inducing naive immune cells to suppressive phenotypes, promoting recruitment of immunosuppressing cells as well as impairing functions of cytotoxic leukocytes. However, only in recent years have studies shown that galectin-1 appears to perform a pro-inflammatory role in certain diseases. In this review, we describe the anti-inflammatory function of galectin-1 and its possible mechanisms and summarize the existing therapies and preclinical efficacy relating to these agents. In the meantime, we also discuss the potential causal factors by which galectin-1 promotes the progression of inflammation.
Collapse
|
5
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
6
|
He YS, Hu YQ, Xiang K, Chen Y, Feng YT, Yin KJ, Huang JX, Wang J, Wu ZD, Wang GH, Pan HF. Therapeutic potential of galectin-1 and galectin-3 in autoimmune diseases. Curr Pharm Des 2021; 28:36-45. [PMID: 34579628 DOI: 10.2174/1381612827666210927164935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Galectins are a highly conserved protein family that binds to β-galactosides. Different members of this family play a variety of biological functions in physiological and pathological processes such as angiogenesis, regulation of immune cell activity, and cell adhesion. Galectins are widely distributed and play a vital role both inside and outside cells. It can regulate homeostasis and immune function in vivo through mechanisms such as apoptosis. Recent studies indicate that galectins exhibit pleiotropic roles in inflammation. Furthermore, emerging studies have found that galectins are involved in the occurrence and development of autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D) and systemic sclerosis (SSc) by regulating cell adhesion, apoptosis, and other mechanisms. This review will briefly discuss the biological characteristics of the two most widely expressed and extensively explored members of the galectin family, galectin-1 and galectin-3, as well as their pathogenetic and therapeutic roles in autoimmune diseases. These information may provide a novel and promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Yue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Ya-Ting Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Kang-Jia Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Ji-Xiang Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Zheng-Dong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Gui-Hong Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui. China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| |
Collapse
|
7
|
Immunosuppressive Roles of Galectin-1 in the Tumor Microenvironment. Biomolecules 2021; 11:biom11101398. [PMID: 34680031 PMCID: PMC8533562 DOI: 10.3390/biom11101398] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Evasion of immune surveillance is an accepted hallmark of tumor progression. The production of immune suppressive mediators by tumor cells is one of the major mechanisms of tumor immune escape. Galectin-1 (Gal-1), a pivotal immunosuppressive molecule, is expressed by many types of cancer. Tumor-secreted Gal-1 can bind to glycosylated receptors on immune cells and trigger the suppression of immune cell function in the tumor microenvironment, contributing to the immune evasion of tumors. The aim of this review is to summarize the current literature on the expression and function of Gal-1 in the human tumor microenvironment, as well as therapeutics targeting Gal-1.
Collapse
|
8
|
Zhang Z, Zhang W, Mu C, Li R, Song W, Ye Y, Shi C, Liu L, Wang H, Wang C. Identification and characterization of a novel galectin from the mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2020; 98:699-709. [PMID: 31726099 DOI: 10.1016/j.fsi.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Galectins are a family of β-galactoside-binding lectins that play key roles in the invertebrate innate immunity system, but no galectin genes have been identified in the mud crab (Scylla paramamosain) so far. The present study is the first to clone a galectin gene (SpGal) from S. paramamosain, by the rapid amplification of cDNA ends technique based on expressed sequence tags. The full-length cDNA of SpGal was 3142 bp. Its open reading frame encoded a polypeptide of 280 amino acids containing a GLECT/Gal-bind lectin domain and a potential N-glycosylation site. The deduced amino acid sequence and multi-domain organization of SpGal were highly similar to those of invertebrate galectins, and phylogenetic analysis showed that SpGal was closely related to galectin isolated from Portunus trituberculatus. The mRNA transcripts of SpGal were found to be constitutively expressed in a wide range of tissues, with its expression level being higher in the hepatopancreas, gill, and hemocytes. The mRNA expression level of SpGal increased rapidly after the crabs were stimulated by Vibrio alginolyticus, and the maximum expression appeared at 6 h after the challenge. The lipopolysaccharide-binding ability of SpGal was dependent on its concentration, and it also exhibited agglutination activity with three Gram-negative (Aeromonas hydrophila, Chryseobacterium indologenes and Vibrio alginolyticus) and three Gram-positive (Bacillus aquimaris, Staphylococcus aureus and Micrococcus lysodeik) bacterial strains. In addition, hemagglutination activity with rabbit erythrocytes was observed in the absence of d-galactose. These results indicate that SpGal in S. paramamosain acts as a pattern recognition receptor to recognize a broad spectrum of microbes. The findings together indicate that SpGal plays an important role in the innate immune mechanisms of S. paramamosain against pathogenic infection.
Collapse
Affiliation(s)
- Zhouyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weijia Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Huan Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Farhadi SA, Fettis MM, Liu R, Hudalla GA. A Synthetic Tetramer of Galectin-1 and Galectin-3 Amplifies Pro-apoptotic Signaling by Integrating the Activity of Both Galectins. Front Chem 2020; 7:898. [PMID: 31998689 PMCID: PMC6966408 DOI: 10.3389/fchem.2019.00898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023] Open
Abstract
Galectin-1 (G1) and galectin-3 (G3) are carbohydrate-binding proteins that can signal apoptosis in T cells. We recently reported that a synthetic tetramer with two G1 and two G3 domains ("G1/G3 Zipper") induces Jurkat T cell death more potently than G1. The pro-apoptotic signaling pathway of G1/G3 Zipper was not elucidated, but we hypothesized based on prior work that the G1 domains acted as the signaling units, while the G3 domains served as anchors that increase glycan-binding affinity. To test this, here we studied the involvement of different cell membrane glycoproteins and intracellular mediators in pro-apoptotic signaling via G1/G3 Zipper, G1, and G3. G1/G3 Zipper induced Jurkat T cell death more potently than G1 and G3 alone or in combination. G1/G3 Zipper, G1, and G3 increased caspase-8 activity, yet only G1 and G3 depended on it to induce cell death. G3 increased caspase-3 activity more than G1/G3 Zipper and G1, while all three galectin variants required it to induce cell death. JNK activation had similar roles downstream of G1/G3 Zipper, G1, and G3, whereas ERK had differing roles. CD45 was essential for G1 activity, and was involved in signaling via G1/G3 Zipper and G3. CD7 inhibited G1/G3 Zipper activity at low galectin concentrations but not at high galectin concentrations. In contrast, CD7 was necessary for G1 and G3 signaling at low galectin concentration but antagonistic at high galectin concentrations. Collectively, these observations suggest that G1/G3 Zipper amplifies pro-apoptotic signaling through the integrated activity of both the G1 and G3 domains.
Collapse
Affiliation(s)
- Shaheen A Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Margaret M Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Wiersma VR. Lectins as modulators of autophagy in cancer immunotherapy. AUTOPHAGY IN IMMUNE RESPONSE: IMPACT ON CANCER IMMUNOTHERAPY 2020:53-74. [DOI: 10.1016/b978-0-12-819609-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Madhu C, Balaji K, Shankar J, Sharada A. Antitumor effects of chitin specific lectin from Praecitrullus fistulosus by targeting angiogenesis and apoptosis. Biochem Biophys Res Commun 2019; 518:381-387. [DOI: 10.1016/j.bbrc.2019.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023]
|
12
|
Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ 2019; 26:981-993. [PMID: 30903104 DOI: 10.1038/s41418-019-0317-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Glycosylation and glycan-binding proteins such as galectins play an important role in the control of cell death signaling. Strikingly, very little attention has been given so far to the understanding of the molecular details behind this key regulatory network. Glycans attached to the death receptors such as CD95 and TRAIL-Rs, either alone or in a complex with galectins, might promote or inhibit apoptotic signals. However, we have just started to decode the functions of galectins in the modulation of extrinsic and intrinsic apoptosis. In this work, we have discussed the current understanding of the glycosylation-galectin regulatory network in CD95- as well as TRAIL-R-induced apoptosis and therapeutic strategies based on targeting galectins in cancer.
Collapse
|
13
|
Pasmatzi E, Monastirli A, Badavanis G, Tsambaos D. Galectin 1 in dermatology: current knowledge and perspectives. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Alhabbab R, Blair P, Smyth LA, Ratnasothy K, Peng Q, Moreau A, Lechler R, Elgueta R, Lombardi G. Galectin-1 is required for the regulatory function of B cells. Sci Rep 2018; 8:2725. [PMID: 29426942 PMCID: PMC5807431 DOI: 10.1038/s41598-018-19965-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Galectin-1 (Gal-1) is required for the development of B cells in the bone marrow (BM), however very little is known about the contribution of Gal-1 to the development of B cell regulatory function. Here, we report an important role for Gal-1 in the induction of B cells regulatory function. Mice deficient of Gal-1 (Gal-1−/−) showed significant loss of Transitional-2 (T2) B cells, previously reported to include IL-10+ regulatory B cells. Gal-1−/− B cells stimulated in vitro via CD40 molecules have impaired IL-10 and Tim-1 expression, the latter reported to be required for IL-10 production in regulatory B cells, and increased TNF-α expression compared to wild type (WT) B cells. Unlike their WT counterparts, T2 and T1 Gal-1−/− B cells did not suppress TNF-α expression by CD4+ T cells activated in vitro with allogenic DCs (allo-DCs), nor were they suppressive in vivo, being unable to delay MHC-class I mismatched skin allograft rejection following adoptive transfer. Moreover, T cells stimulated with allo-DCs show an increase in their survival when co-cultured with Gal-1−/− T2 and MZ B cells compared to WT T2 and MZ B cells. Collectively, these data suggest that Gal-1 contributes to the induction of B cells regulatory function.
Collapse
Affiliation(s)
- R Alhabbab
- Infectious Disease Unit & Division of Applied Medical Sciences, King Fahad Centre for medical research, King Abdulaziz University, Jeddah, Saudi Arabia. .,Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.
| | - P Blair
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.,Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - L A Smyth
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.,School of Health, Sports and Biosciences, University of East London, Stratford, E15 4LZ, UK
| | - K Ratnasothy
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK
| | - Q Peng
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK
| | - A Moreau
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, CHU, Nantes, France
| | - R Lechler
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK
| | - R Elgueta
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.
| | - G Lombardi
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
15
|
Luo W, Song L, Chen XL, Zeng XF, Wu JZ, Zhu CR, Huang T, Tan XP, Lin XM, Yang Q, Wang JZ, Li XK, Wu XP. Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells. Oncotarget 2018; 7:26709-23. [PMID: 27050374 PMCID: PMC5042009 DOI: 10.18632/oncotarget.8489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib.
Collapse
Affiliation(s)
- Wu Luo
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Li Song
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xi-Lei Chen
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiang-Feng Zeng
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Jian-Zhang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Cai-Rong Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Tao Huang
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiang-Peng Tan
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiao-Mian Lin
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Qi Yang
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Ji-Zhong Wang
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiao-Kun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiao-Ping Wu
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
16
|
Al-Qathama A, Gibbons S, Prieto JM. Differential modulation of Bax/Bcl-2 ratio and onset of caspase-3/7 activation induced by derivatives of Justicidin B in human melanoma cells A375. Oncotarget 2017; 8:95999-96012. [PMID: 29221182 PMCID: PMC5707076 DOI: 10.18632/oncotarget.21625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/26/2017] [Indexed: 12/26/2022] Open
Abstract
Diphyllin and its derivatives are well known cytotoxic natural products structurally related to the anti-cancer drug podophyllotoxin. We here study their structure-activity relationship upon human melanoma cells for first time. To this end, human melanoma A375 cells were incubated with Justicidin B and its 4-methoxylated or 4-glycosylated derivatives to evaluate their selective cytotoxicity and study their effects on cell cycle distribution, caspase activation, apoptosis induction using Annexin V-FITC/PI staining, cell morphology and western blot analysis. Diphyllin methyl ether (GI50 = 3.66 μM) and Justicidin B (GI50 = 1.70 μM) caused an elevation of both early and late apoptosis populations whereas Diphyllin apioside (GI50 = 0.84 μM) and its acetate (GI50= 0.39 μM) enhanced late apoptosis population only (Annexin V-positive/PI-positive). All induced cell cycle arrest at S phase and classic morphological indicators of apoptosis (blebbing, apoptotic bodies, and nuclear fragmentation) accompanied with an elevation of cells with low DNA content (sub-G1). All compounds increased the Bax/Bcl-2 ratio by enhancing Bax expression which evidences the involvement of the mitochondria (intrinsic pathway) in the apoptotic process. These caspase-3/7 results evidence that 4-methoxylation or 4-O-glycosylation of Justicidin B -a caspase independent mitochondrial apoptosis-inducer- triggers caspase-3/7 activation at different times (24h vs. 48h, respectively). Interestingly, the methoxylation causes attenuation of Bcl-2 protein expression contrarily to Diphyllin methyl ether or the O-glycosylated derivatives. Finally, the compounds exhibited significantly less toxicity when tested in adult human dermal fibroblasts and their GI50 in melanoma Sk-Mel-5 cells was not influenced by MDR1/Pgp inhibitors. This study may inform the synthesis of future Diphyllin derivatives with different apoptosis mechanism of action towards human melanoma cells.
Collapse
Affiliation(s)
- Aljawharah Al-Qathama
- Centre for Pharmacognosy and Phytotherapy, University College London School of Pharmacy, London WC1N 1AX, United Kingdom.,Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Simon Gibbons
- Centre for Pharmacognosy and Phytotherapy, University College London School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Jose M Prieto
- Centre for Pharmacognosy and Phytotherapy, University College London School of Pharmacy, London WC1N 1AX, United Kingdom
| |
Collapse
|
17
|
Xue J, Fu C, Cong Z, Peng L, Peng Z, Chen T, Wang W, Jiang H, Wei Q, Qin C. Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages. FEBS J 2016; 284:97-113. [PMID: 27981746 DOI: 10.1111/febs.13955] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/10/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
HIV-1-infected macrophages are a key contributor to the formation of a viral reservoir and new treatment strategies focus on eliminating this pool of virus. Galectin-3 is a potent apoptosis-inducing protein that regulates diverse cellular activities. In the present study, we investigated whether galectin-3 could induce cell death in HIV-1-infected macrophages using HIV-1-infected THP1 monocytes (THP1-MNs) and THP1-derived macrophages (THP1-MΦs) as in vitro cellular models. We found that THP1-MΦs were more resistant than the THP1-MNs to HIV-1 infection-induced death, and that HIV-1 infection of the THP1-MΦs increased expression of the anti-apoptotic proteins Mcl-1, Bcl-2 and Bcl-xL. Additionally, galectin-3 but not FasL, tumor necrosis factor (TNF)-related apoptosis-inducing ligand or TNF-α, could induce cell death in HIV-1-infected THP1-MΦs. A similar result was shown for primary human monocyte-derived macrophages. Galectin-3-induced cell death was also significantly increased in macrophages obtained from SIVmac251-infected macaques compared to that of macrophages from healthy macaques. Furthermore, galectin-3-induced cell death in HIV-1-infected THP1-MΦs was caspase independent. Interestingly, endonuclease G (Endo G) was increased in the nucleus and decreased in the cytoplasm of galectin-3-treated cells; thus, galectin-3-induced cell death in HIV-1-infected THP1-MΦs is most likely related to the translocation of Endo G from the cytoplasm to the nucleus. These findings suggest that galectin-3 may potentially aid in the eradication of HIV-1/SIV-infected macrophages.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Chunyan Fu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Zhe Cong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Lingjuan Peng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Zhuoying Peng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Ting Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Wei Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Hong Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| |
Collapse
|
18
|
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 2016; 37:1327-37. [PMID: 26577077 DOI: 10.1002/bies.201500055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.
Collapse
Affiliation(s)
- Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Mener
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross M Fasano
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Erin Meyer
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Annie M Winkler
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra D Josephson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Amoury M, Mladenov R, Nachreiner T, Pham AT, Hristodorov D, Di Fiore S, Helfrich W, Pardo A, Fey G, Schwenkert M, Thepen T, Kiessling F, Hussain AF, Fischer R, Kolberg K, Barth S. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein. Int J Cancer 2016; 139:916-27. [DOI: 10.1002/ijc.30119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/24/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Manal Amoury
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Radoslav Mladenov
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Anh-Tuan Pham
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Dmitrij Hristodorov
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Stefano Di Fiore
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology; University of Groningen, University Medical Center Groningen; The Netherlands
| | - Alessa Pardo
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Georg Fey
- Department of Biology; Friedrich Alexander University Erlangen-Nuremberg; Germany
| | | | - Theophilus Thepen
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen; Germany
| | - Ahmad F. Hussain
- Department of Gynecology and Obstetrics; University Hospital RWTH Aachen; Germany
| | - Rainer Fischer
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Katharina Kolberg
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences; University of Cape Town; Observatory South Africa
| |
Collapse
|
20
|
Molecular cloning, expression of a galectin gene in Pacific white shrimp Litopenaeus vannamei and the antibacterial activity of its recombinant protein. Mol Immunol 2015; 67:325-40. [DOI: 10.1016/j.molimm.2015.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/14/2022]
|
21
|
Sirko S, Irmler M, Gascón S, Bek S, Schneider S, Dimou L, Obermann J, De Souza Paiva D, Poirier F, Beckers J, Hauck SM, Barde YA, Götz M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia 2015; 63:2340-61. [PMID: 26250529 PMCID: PMC5042059 DOI: 10.1002/glia.22898] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023]
Abstract
Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes.
Collapse
Affiliation(s)
- Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sergio Gascón
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sarah Bek
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Sarah Schneider
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jara Obermann
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Daisylea De Souza Paiva
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Francoise Poirier
- Institut Jacques Monod, CNRS-University Paris Diderot, Paris, France
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
22
|
Tang D, Gao J, Wang S, Yuan Z, Ye N, Chong Y, Xu C, Jiang X, Li B, Yin W, Miao Y, Wang D, Jiang K. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumour Biol 2015; 36:5617-5626. [PMID: 25725585 DOI: 10.1007/s13277-015-3233-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/06/2015] [Indexed: 02/07/2023] Open
Abstract
Galectin-1, a β-galactoside-binding protein implicated in cancer cell immune privilege, was highly expressed in activated pancreatic stellate cells (PSCs). This study was designed to investigate the relationship between PSC-derived galectin-1 and tumor immunity in pancreatic cancer. Isolated PSCs were identified as normal pancreas cells (hNPSCs) or pancreatic cancer cells (hCaPSCs) by immunohistochemical staining for α-SMA and vimentin, and galectin-1 expression was evaluated by Western blotting and quantitative RT-PCR. Apoptosis, caspase activity, and cytokine production (IL-6, IL-10, TNF-β, and IFN-γ) of T cells co-cultured with PSCs were evaluated, and immunohistochemical staining of galectin-1 was correlated with CD3 and clinicopathological variables in 66 pancreatic cancer and 10 normal pancreatic tissue samples. hCaPSCs exhibited higher galectin-1 expression than did hNPSCs, and hCaPSCs induced higher levels of apoptosis in T cells following co-culture. hCaPSCs activated caspase-9 and caspase-3 in the mitochondrial apoptotic pathway and stimulated secretion of Th2 cytokines (IL-6 and IL-10) but decreased secretion of Th1 cytokines (TNF-β and IFN-γ), compared with hNPSCs. Immunohistochemical staining indicated that galectin-1 and CD3 were more highly expressed in pancreatic cancer tissue. Galectin-1 expression was highest in poorly differentiated pancreatic cancer cells and lowest in well-differentiated pancreatic cancer cells and was associated with tumor size, lymph node metastasis, differentiation, and UICC stage. However, CD3 expression showed the opposite trend and was highest in well-differentiated pancreatic cancer cells and was associated with tumor differentiation and UICC stage. High expression of galectin-1 was associated with short survival, as was low expression of CD3. hCaPSC-derived galectin-1 enhanced apoptosis and anergy of T cells in pancreatic cancer, which contributes to the immune escape of pancreatic cancer cells.
Collapse
Affiliation(s)
- Dong Tang
- Department of General Surgery, Clinical Medical College, Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Deák M, Hornung Á, Novák J, Demydenko D, Szabó E, Czibula Á, Fajka-Boja R, Kriston-Pál É, Monostori É, Kovács L. Novel role for galectin-1 in T-cells under physiological and pathological conditions. Immunobiology 2015; 220:483-9. [DOI: 10.1016/j.imbio.2014.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/09/2023]
|
24
|
Bu Q, Wang J, Zheng Y, Zou Y, Wei M. MGL induces nuclear translocation of EndoG and AIF in caspase-independent T cell death. ACTA ACUST UNITED AC 2015; 20:816-24. [DOI: 10.1515/cmble-2015-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/21/2015] [Indexed: 11/15/2022]
Abstract
AbstractMacrophage galactose-type lectin (MGL) participates in the regulation of T cell apoptosis, but the exact death pathway remains unclear. Here, we demonstrated that MGL-induced T cell death occurs in a caspaseindependent manner. Furthermore, MGL treatment triggers the translocation of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) from the mitochondria to the nucleus. Because galectin-1 (Gal-1) can also initiate similar mitochondrial events, we speculate that this death pathway may be widely used by the lectin family.
Collapse
|
25
|
Suzuki O, Abe M. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans. Int J Oncol 2014; 44:1433-42. [PMID: 24589677 PMCID: PMC4027875 DOI: 10.3892/ijo.2014.2319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/28/2014] [Indexed: 01/01/2023] Open
Abstract
Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by steric hindrance. The adhesive capacity of H-ALCL cells is regulated by phosphatidylinositol 3 phosphate kinase (PI3K) and actin cytoskeleton, and the invasive capacity of H-ALCL cells is regulated by PI3K, mitogen-activated protein kinase (MAPK), Rho and actin cytoskeleton. Furthermore, galectin-1-induced cell death in H-ALCL cells was accompanied by inhibition of CD45 protein tyrosine phosphatase (PTP) activity. In conclusion, cell adhesion and invasion to galectin-1 appeared to be regulated by cell surface sialylation and N-glycosylation, and galectin-1 regulates cell death through inhibition of CD45 PTP activity of H-ALCL.
Collapse
Affiliation(s)
- Osamu Suzuki
- Department of Diagnostic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Masafumi Abe
- Department of Diagnostic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
26
|
GM1 controlled lateral segregation of tyrosine kinase Lck predispose T-cells to cell-derived galectin-1-induced apoptosis. Mol Immunol 2014; 57:302-9. [DOI: 10.1016/j.molimm.2013.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/09/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022]
|
27
|
Khan-Farooqi HR, Prins RM, Liau LM. Tumor immunology, immunomics and targeted immunotherapy for central nervous system malignancies. Neurol Res 2013; 27:692-702. [PMID: 16197806 DOI: 10.1179/016164105x49490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Although the brain was traditionally considered as 'immunologically privileged', recent findings have implied an involvement of immune mechanisms in neurological disease and illness, including central nervous system (CNS) malignancies. In this review, we initially focus on aspects of the immune system critical for effective antitumor immunity, as an understanding of normal immunological functions and how they relate to tumor immunology will set a foundation for understanding the unique challenges facing the integration of neuro-oncology and neuroimmunology. We summarize current knowledge of immune responses in the 'immunologically quiescent' brain and its role in tumor immunology. We will then discuss the emerging field of 'immunomics' and recent advances in molecular technologies, such as DNA microarray, which are being applied to brain tumor antigen epitope discovery and patient stratification for brain cancer immunotherapy. This, in turn, should have significant importance for ultimately designing and developing efficient and focused strategies for anticancer immunotherapy. Finally, the current state of immune-based treatment paradigms and future directions will be discussed, paying particular attention to targeted antibody strategies, adoptive cellular immunotherapy, and tumor vaccine approaches that have been studied in clinical trials for CNS neoplasms.
Collapse
Affiliation(s)
- Haumith R Khan-Farooqi
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California 90095-6901, USA
| | | | | |
Collapse
|
28
|
Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, Blanchard H, Ralph SJ. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev 2013; 31:763-78. [PMID: 22706847 DOI: 10.1007/s10555-012-9388-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Koichi Ito
- School of Medical Science, Griffith Health Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ 2013; 20:976-86. [PMID: 23703323 DOI: 10.1038/cdd.2013.50] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 02/04/2023] Open
Abstract
Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.
Collapse
Affiliation(s)
- R G Lichtenstein
- Avram and Stella Goren-Goldstein, Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
30
|
|
31
|
Wiersma VR, de Bruyn M, van Ginkel RJ, Sigar E, Hirashima M, Niki T, Nishi N, Samplonius DF, Helfrich W, Bremer E. The glycan-binding protein galectin-9 has direct apoptotic activity toward melanoma cells. J Invest Dermatol 2012; 132:2302-5. [PMID: 22572821 PMCID: PMC3422695 DOI: 10.1038/jid.2012.133] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Valerie R Wiersma
- Department of Surgery, Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Surgery, Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert J van Ginkel
- Department of Surgery, Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emily Sigar
- Department of Surgery, Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mitsuomi Hirashima
- Department of Immunology & Immunopathology, Kagawa University, Faculty of Medicine, Kagawa, Japan
| | | | - Nozomu Nishi
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Douwe F Samplonius
- Department of Surgery, Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wijnand Helfrich
- Department of Surgery, Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Surgery, Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Mok WC, Wasser S, Tan T, Lim SG. Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma. World J Gastroenterol 2012; 18:3527-36. [PMID: 22826617 PMCID: PMC3400854 DOI: 10.3748/wjg.v18.i27.3527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/30/2012] [Accepted: 05/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of polo-like kinase 1 (PLK1) as a therapeutic target for hepatocellular carcinoma (HCC). METHODS PLK1 gene expression was evaluated in HCC tissue and HCC cell lines. Gene knockdown with short-interfering RNA (siRNA) was used to study PLK1 gene and protein expression using real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, and cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium (MTS) and bromodeoxyuridine (BrdU) assays. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and caspase-inhibition assay. Huh-7 cells were transplanted into nude mice and co-cultured with PLK1 siRNA or control siRNA, and tumor progression was compared with controls. RESULTS RT-PCR showed that PLK1 was overexpressed 12-fold in tumor samples compared with controls, and also was overexpressed in Huh-7 cells. siRNA against PLK1 showed a reduction in PLK1 gene and protein expression of up to 96% in Huh-7 cells, and a reduction in cell proliferation by 68% and 92% in MTS and BrdU cell proliferation assays, respectively. There was a 3-fold increase in apoptosis events, and TUNEL staining and caspase-3 assays suggested that this was caspase-independent. The pan-caspase inhibitor Z-VAD-FMK was unable to rescue the apoptotic cells. Immnofluorescence co-localized endonuclease-G to fragmented chromosomes, implicating it in apoptosis. Huh-7 cells transplanted subcutaneously into nude mice showed tumor regression in siPLK1-treated mice, but not in controls. CONCLUSION Knockdown of PLK1 overexpression in HCC was shown to be a potential therapeutic target, leading to apoptosis through the endonuclease-G pathway.
Collapse
|
33
|
|
34
|
Chung LY, Tang SJ, Sun GH, Chou TY, Yeh TS, Yu SL, Sun KH. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin Cancer Res 2012; 18:4037-47. [PMID: 22696230 DOI: 10.1158/1078-0432.ccr-11-3348] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study is aimed at investigating the role and novel molecular mechanisms of galectin-1 in lung cancer progression. EXPERIMENTAL DESIGN The role of galectin-1 in lung cancer progression was evaluated both in vitro and in vivo by short hairpin RNA (shRNA)-mediated knockdown of galectin-1 in lung adenocarcinoma cell lines. To explore novel molecular mechanisms underlying galectin-1-mediated tumor progression, we analyzed gene expression profiles and signaling pathways using reverse transcription PCR and Western blotting. A tissue microarray containing samples from patients with lung cancer was used to examine the expression of galectin-1 in lung cancer. RESULTS We found overexpression of galectin-1 in non-small cell lung cancer (NSCLC) cell lines. Suppression of endogenous galectin-1 in lung adenocarcinoma resulted in reduction of the cell migration, invasion, and anchorage-independent growth in vitro and tumor growth in mice. In particular, COX-2 was downregulated in galectin-1-knockdown cells. The decreased tumor invasion and anchorage-independent growth abilities were rescued after reexpression of COX-2 in galectin-1-knockdown cells. Furthermore, we found that TGF-β1 promoted COX-2 expression through galectin-1 interaction with Ras and subsequent activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and NF-κB pathway. Galectin-1 knockdown sensitized lung cancer cells to platinum-based chemotherapy (cisplatin). In addition, galectin-1 and COX-2 expression was correlated with the progression of lung adenocarcinoma, and high clinical relevance of both proteins was evidenced (n = 47). CONCLUSIONS p38 MAPK, ERK, and COX-2 activation are novel mediators for the galectin-1-promoted tumor progression and chemoresistance in lung cancer. Galectin-1 may be an innovative target for combined modality therapy for lung cancer.
Collapse
Affiliation(s)
- Ling-Yen Chung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
Galectin-1-mediated cell death is increased by CD30-induced signaling in anaplastic large cell lymphoma cells but not in Hodgkin lymphoma cells. J Transl Med 2012; 92:191-9. [PMID: 21986812 DOI: 10.1038/labinvest.2011.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endogenous β-galactose-binding lectins have many biological functions, but their biological significance in Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) remains unclear. By immunohistochemistry, we analyzed the expression of galectin-1 and galectin-3 in HL and ALCL cases as well as in cell lines, and investigated the pharmacological effects of galectin-1 treatment with and without CD30 pre-stimulation of HL and ALCL cell lines. The galectin-3-negative human embryonic kidney cell line (HEK-293) was transfected with galectin-3 cDNA. Galectin-3 is differentially expressed in HL and ALCL. CD30 stimulation of the ALCL cell line Karpas 299 activates NF-κB without induction of apoptosis. Galectin-1 treatment of Karpas 299 induces cell death, which is significantly increased by CD30 pre-stimulation. The CD30-mediated increase of galectin-1-induced cell death is to some extent caspase independent and does not influence the expression of tumor necrosis factor-associated factor 1 (TRAF1), TRAF2, and cellular inhibitor of apoptosis 2 protein (cIAP2), as revealed in Karpas 299 cells. In other cell lines except Karpas 299, CD30 pre-stimulation did not significantly enhance galectin-1-induced cell death. Galectin-3 transfection of HEK-293 cells resulted in cell surface expression of galectin-3, associated with marked cell aggregation. CD30-targeted therapy in combination with galectin-1 treatment may induce effective killing of ALCL cells but not of HL cells.
Collapse
|
36
|
Verschuere T, De Vleeschouwer S, Lefranc F, Kiss R, Van Gool SW. Galectin-1 and immunotherapy for brain cancer. Expert Rev Neurother 2011; 11:533-43. [PMID: 21469926 DOI: 10.1586/ern.11.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of patients diagnosed with high-grade glioma continues to be dismal in spite of multimodal treatment. Active specific immunotherapy by means of dendritic cell vaccination is considered to be a new promising concept that aims at generating an anti-tumoral immune response. However, it is now widely accepted that the success of immunotherapeutic strategies to promote tumor regression will rely not only on enhancing the effector arm of the immune response but also on downregulation of the counteracting tolerogenic signals. In this article, we summarize evidence that galectin-1, an evolutionarily conserved glycan-binding protein that is abundantly expressed in high-grade glioma, is an important player in glioma-mediated immune escape.
Collapse
Affiliation(s)
- Tina Verschuere
- Laboratory of Experimental Immunology, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
37
|
Vařecha M, Potěšilová M, Matula P, Kozubek M. Endonuclease G interacts with histone H2B and DNA topoisomerase II alpha during apoptosis. Mol Cell Biochem 2011; 363:301-7. [PMID: 22160858 DOI: 10.1007/s11010-011-1182-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/24/2011] [Indexed: 11/25/2022]
Abstract
Apoptosis is a natural form of cell death involved in many physiological changes in the cell. Defects in the process of apoptosis can lead to serious diseases. During some apoptotic pathways, proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) are released from the mitochondria and they translocate into the cell nuclei, where they probably participate in chromatin degradation together with other nuclear proteins. Exact mechanism of EndoG activity in cell nucleus is still unknown. Some interacting partners like flap endonuclease 1, DNase I, and exonuclease III were already suggested, but also other interacting partners were proposed. We conducted a living-cell confocal fluorescence microscopy followed by an image analysis of fluorescence resonance energy transfer to analyze the possibility of protein interactions of EndoG with histone H2B and human DNA topoisomerase II alpha (TOPO2a). Our results show that EndoG interacts with both these proteins during apoptotic cell death. Therefore, we can conclude that EndoG and TOPO2a may actively participate in apoptotic chromatin degradation. The possible existence of a degradation complex consisting of EndoG and TOPO2a and possibly other proteins like AIF and cyclophilin A have yet to be investigated.
Collapse
Affiliation(s)
- Miroslav Vařecha
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Cedeno-Laurent F, Dimitroff CJ. Galectin-1 research in T cell immunity: past, present and future. Clin Immunol 2011; 142:107-16. [PMID: 22019770 DOI: 10.1016/j.clim.2011.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 01/12/2023]
Abstract
Galectin-1 (Gal-1) is one of 15 evolutionarily conserved ß-galactoside-binding proteins that display biologically-diverse activities in pathogenesis of inflammation and cancer. Gal-1 is variably expressed on immune cells and endothelial cells, though is commonly found and secreted at high levels in cancer cells. It induces apoptosis in effector T cells through homodimeric binding of N-acetyllactosamines on membrane glycoproteins (Gal-1 ligands). There is also compelling evidence in models of cancer and autoimmunity that recombinant Gal-1 (rGal-1) can potentiate immunoregulatory function of T cells. Here, we review Gal-1's structural and functional features, while analyzing potential drawbacks and technical difficulties inherent to rGal-1's nature. We also describe new Gal-1 preparations that exhibit dimeric stability and functional activity on T cells, providing renewed excitement for studying Gal-1 efficacy and/or use as anti-inflammatory therapeutics. We lastly summarize strategies targeting the Gal-1-Gal-1 ligand axis to circumvent Gal-1-driven immune escape in cancer and boost anti-tumor immunity.
Collapse
|
39
|
Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 2011; 50:7842-57. [PMID: 21848324 DOI: 10.1021/bi201121m] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Santiago Di Lella
- Laboratorio de Inmunopatologı́a, Instituto de Biologı́a y Medicina Experimental, CONICET, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Brandt B, Abou-Eladab EF, Tiedge M, Walzel H. Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death Dis 2011; 1:e23. [PMID: 21364631 PMCID: PMC3032336 DOI: 10.1038/cddis.2010.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Galectin-1 (gal-1), an endogenous β-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-δ (PKCδ) inhibitor rottlerin (10 μM), and with the specific PKCθ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCδ and PKCθ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation.
Collapse
Affiliation(s)
- B Brandt
- Medical Faculty, Department of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | | | | | | |
Collapse
|
41
|
Protein profiling of human nonpigmented ciliary epithelium cell secretome: the differentiation factors characterization for retinal ganglion cell line. J Biomed Biotechnol 2011; 2011:901329. [PMID: 21860587 PMCID: PMC3157028 DOI: 10.1155/2011/901329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 12/04/2022] Open
Abstract
The purpose of this paper was to characterize proteins secreted from the human nonpigmented ciliary epithelial (HNPE) cells, which have differentiated a rat retinal ganglion cell line, RGC-5. Undifferentiated RGC-5 cells have been shown to express several marker proteins characteristic of retinal ganglion cells. However, RGC-5 cells do not respond to N-methyl-D aspartate (NMDA), or glutamate. HNPE cells have been shown to secrete numbers of neuropeptides or neuroproteins also found in the aqueous humor, many of which have the ability to influence the activity of neuronal cells. This paper details the profile of HNPE cell-secreted proteins by proteomic approaches. The experimental results revealed the identification of 132 unique proteins from the HNPE cell-conditioned SF-medium. The biological functions of a portion of these identified proteins are involved in cell differentiation. We hypothesized that a differentiation system of HNPE cell-conditioned SF-medium with RGC-5 cells can induce a differentiated phenotype in RGC-5 cells, with functional characteristics that more closely resemble primary cultures of rat retinal ganglion cells. These proteins may replace harsh chemicals, which are currently used to induce cell differentiation.
Collapse
|
42
|
Barrow H, Rhodes JM, Yu LG. The role of galectins in colorectal cancer progression. Int J Cancer 2011; 129:1-8. [PMID: 21520033 DOI: 10.1002/ijc.25945] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins constitute a family of 15 mammalian galactoside-binding proteins that share a consensus amino acid sequence in their carbohydrate binding sites. They are multi-functional molecules and are expressed widely in human tissues. Four galectins: galectin -1, -3, -4 and -8 are expressed in the human colon and rectum and their expressions show significant changes during colorectal cancer development and metastasis. These changes in galectin expression correlate with alterations in cancer cell growth, apoptosis, cell-cell and cell-matrix interactions and angiogenesis. This review summaries current knowledge of the expression and roles of these galectins in the progression of human colorectal cancer and discusses the relevance of galectins and their ligands as potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Hannah Barrow
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
43
|
Blaskó A, Fajka-Boja R, Ion G, Monostori E. How does it act when soluble? Critical evaluation of mechanism of galectin-1 induced T-cell apoptosis. ACTA BIOLOGICA HUNGARICA 2011; 62:106-11. [PMID: 21388924 DOI: 10.1556/abiol.61.2011.1.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Galectin-1 (Gal-1), a mammalian lectin induces apoptosis of T lymphocytes. Contradictory data have resulted in confusing knowledge regarding mechanism of Gal-1 induced T-cell apoptosis. In this paper we aimed to resolve this controversy by comparing cell death induced by low (1.8 μM, lowGal-1) and high (18 μM, highGal-1) concentration of soluble Gal-1. We show that lowGal-1 and highGal-1 trigger phosphatidylserine exposure, generation of rafts and mitochondrial membrane depolarization. In contrast, lowGal-1 but not highGal-1 is dependent on the presence of p56lck and ZAP70 and activates caspase cascade. The results allow the conclusion that the cell-death mechanism strictly depends on the concentration of Gal-1.
Collapse
Affiliation(s)
- Andrea Blaskó
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
44
|
Salatino M, Rabinovich GA. Fine-tuning antitumor responses through the control of galectin-glycan interactions: an overview. Methods Mol Biol 2011; 677:355-374. [PMID: 20941621 DOI: 10.1007/978-1-60761-869-0_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In recent years, we have witnessed critical advances in genomics and proteomics which contributed to delineate the "tumor progression signature". This includes the altered expression of genes and proteins not only in tumor cells, but also in tumor-associated stromal, endothelial, and immune cells. Adding more complexity to this bewildering information, efforts are being made to define the "glycosylation signature" of the tumor microenvironment, which results from the abnormal expression and activity of glycosyltransferases, glycosidases, and enzyme chaperons. The multiple combinatorial possibilities of glycan structures expressed by neoplastic versus normal tissue provide enormous potential for information display and expand potential therapeutic opportunities. The responsibility of deciphering the biological information encoded by the tumor-associated glycome is partially assigned, to distinct families of endogenous glycan-binding proteins or lectins, whose expression and function are regulated in cancerous tissues. Galectins, a family of evolutionarily conserved glycan-binding proteins, can control tumor progression by directly influencing tumor growth or by modulating cell migration, angiogenesis, and tumor-immune escape. In this review, we will highlight recent findings on how galectin-glycan lattices control the dialogue between tumor and immune cells and how these interactions could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Mariana Salatino
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
45
|
Liu FT, Yang RY, Saegusa J, Chen HY, Hsu DK. Galectins in Regulation of Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:431-42. [DOI: 10.1007/978-1-4419-7877-6_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Baratchi S, Kanwar RK, Kanwar JR. Survivin: A target from brain cancer to neurodegenerative disease. Crit Rev Biochem Mol Biol 2010; 45:535-54. [DOI: 10.3109/10409238.2010.516740] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Hodeify R, Megyesi J, Tarcsafalvi A, Safirstein RL, Price PM. Protection of cisplatin cytotoxicity by an inactive cyclin-dependent kinase. Am J Physiol Renal Physiol 2010; 299:F112-20. [PMID: 20444741 DOI: 10.1152/ajprenal.00151.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cisplatin cytotoxicity is dependent on cyclin-dependent kinase 2 (Cdk2) activity in vivo and in vitro. A Cdk2 mutant (Cdk2-F80G) was designed in which the ATP-binding pocket was altered. When expressed in mouse kidney cells, this protein was kinase inactive, did not inhibit endogenous Cdk2, but protected from cisplatin. The mutant was localized in the cytoplasm, but when coexpressed with cyclin A, it was activated, localized to the nucleus, and no longer protected from cisplatin cytotoxicity. Cells exposed to cisplatin in the presence of the activated mutant had an apoptotic phenotype, and endonuclease G was released from mitochondria similar to that mediated by endogenous Cdk2. But unlike apoptosis mediated by wild-type Cdk2, cisplatin exposure of cells expressing the activated mutant did not cause cytochrome c release or significant caspase-3 activation. We conclude that cisplatin likely activates both caspase-dependent and -independent cell death, and Cdk2 is required for both pathways. The mutant-inactive Cdk2 protected from both death pathways, but after activation by excess cyclin A, caspase-independent cell death predominated.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|
48
|
Laderach DJ, Compagno D, Toscano MA, Croci DO, Dergan-Dylon S, Salatino M, Rabinovich GA. Dissecting the signal transduction pathways triggered by galectin-glycan interactions in physiological and pathological settings. IUBMB Life 2010; 62:1-13. [PMID: 20014236 DOI: 10.1002/iub.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins are a family of evolutionarily conserved animal lectins with pleiotropic functions and widespread distribution. Fifteen members have been identified in a wide variety of cells and tissues. Through recognition of cell surface glycoproteins and glycolipids, these endogenous lectins can trigger a cascade of intracellular signaling pathways capable of modulating cell differentiation, proliferation, survival, and migration. These cellular events are critical in a variety of biological processes including embryogenesis, angiogenesis, neurogenesis, and immunity and are substantially altered during tumorigenesis, neurodegeneration, and inflammation. In addition, galectins can modulate intracellular functions and this effect involves direct interactions with distinct signaling pathways. In this review, we discuss current knowledge on the intracellular signaling pathways triggered by this multifunctional family of beta-galactoside-binding proteins in selected physiological and pathological settings. Understanding the "galectin signalosome" will be essential to delineate rational therapeutic strategies based on the specific control of galectin expression and function.
Collapse
Affiliation(s)
- Diego J Laderach
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires C1428, Argentina.
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Han SJ, Kaur G, Yang I, Lim M. Biologic Principles of Immunotherapy for Malignant Gliomas. Neurosurg Clin N Am 2010; 21:1-16. [DOI: 10.1016/j.nec.2009.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|