1
|
Moradbeygi F, Ghasemi Y, Farmani AR, Hemmati S. Glucarpidase (carboxypeptidase G2): Biotechnological production, clinical application as a methotrexate antidote, and placement in targeted cancer therapy. Biomed Pharmacother 2023; 166:115292. [PMID: 37579696 DOI: 10.1016/j.biopha.2023.115292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Patients receiving high-dose methotrexate (HDMTX) for malignancies are exposed to diverse complications, including nephrotoxicity, hepatotoxicity, mucositis, myelotoxicity, neurological symptoms, and death. Glucarpidase is a recombinant carboxypeptidase G2 (CPG2) that converts MTX into nontoxic metabolites. In this study, the role of vector type, gene optimization, orientation, and host on the expression of CPG2 is investigated. The effectiveness of various therapeutic regimens containing glucarpidase is classified and perspectives on the dose adjustment based on precision medicine are provided. Conjugation with cell-penetrating peptides, human serum albumin, and polymers such as PEG and dextran for delivery, higher stability, and production of the biobetter variants of CPG2 is highlighted. Conjugation of CPG2 to F(ab՜)2 or scFv antibody fragments against tumor-specific antigens and the corresponding prodrugs for tumor-targeted drug delivery using the antibody-directed enzyme prodrug therapy (ADEPT) is communicated. Trials to reduce the off-target effects and the possibility of repeated ADEPT cycles by adding pro-domains sensitive to tumor-overexpressed proteases, antiCPG2 antibodies, CPG2 mutants with immune-system-unrecognizable epitopes, and protective polymers are reported. Intracellular cpg2 gene expression by gene-directed enzyme prodrug therapy (GDEPT) and the concerns regarding the safety and transfection efficacy of the GDEPT vectors are described. A novel bifunctional platform using engineered CAR-T cell micropharmacies, known as Synthetic Enzyme-Armed KillER (SEAKER) cells, expressing CPG2 to activate prodrugs at the tumor niche is introduced. Taken together, integrated data in this review and recruiting combinatorial strategies in novel drug delivery systems define the future directions of ADEPT, GDEPT, and SEAKER cell therapy and the placement of CPG2 therein.
Collapse
Affiliation(s)
- Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Farmani
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Yang K, Feng S, Luo Z. Oncolytic Adenovirus, a New Treatment Strategy for Prostate Cancer. Biomedicines 2022; 10:biomedicines10123262. [PMID: 36552019 PMCID: PMC9775875 DOI: 10.3390/biomedicines10123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is the most common cancer and one of the leading causes of cancer mortality in males. Androgen-deprivation therapy (ADT) is an effective strategy to inhibit tumour growth at early stages. However, 10~50% of cases are estimated to progress to metastatic castration-resistant prostate cancer (mCRPC) which currently lacks effective treatments. Clinically, salvage treatment measures, such as endocrine therapy and chemotherapy, are mostly used for advanced prostate cancer, but their clinical outcomes are not ideal. When the existing clinical therapeutic methods can no longer inhibit the development of advanced prostate cancer, human adenovirus (HAdV)-based gene therapy and viral therapy present promising effects. Pre-clinical studies have shown its powerful oncolytic effect, and clinical studies are ongoing to further verify its effect and safety in prostate cancer treatment. Targeting the prostate by HAdV alone or in combination with radiotherapy and chemotherapy sheds light on patients with castration-resistant and advanced prostate cancer. This review summarizes the advantages of oncolytic virus-mediated cancer therapy, strategies of HAdV modification, and existing preclinical and clinical investigations of HAdV-mediated gene therapy to further evaluate the potential of oncolytic adenovirus in prostate cancer treatment.
Collapse
Affiliation(s)
- Kaiyi Yang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (K.Y.); (Z.L.)
| | - Shenghui Feng
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhijun Luo
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: (K.Y.); (Z.L.)
| |
Collapse
|
3
|
Heiniö C, Sorsa S, Siurala M, Grönberg-Vähä-Koskela S, Havunen R, Haavisto E, Koski A, Hemminki O, Zafar S, Cervera-Carrascon V, Munaro E, Kanerva A, Hemminki A. Effect of Genetic Modifications on Physical and Functional Titers of Adenoviral Cancer Gene Therapy Constructs. Hum Gene Ther 2019; 30:740-752. [PMID: 30672366 DOI: 10.1089/hum.2018.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After the discovery and characterization of the adenovirus in the 1950s, this prevalent cause of the common cold and other usually mild diseases has been modified and utilized in biomedicine in several ways. To date, adenoviruses are the most frequently used vectors and therapeutic (e.g., oncolytic) agents with a number of beneficial features. They infect both dividing and nondividing cells, enable high-level, transient protein expression, and are easy to amplify to high concentrations. As an important and versatile research tool, it is of essence to understand the limits and advantages that genetic modification of adenovirus vectors may entail. Therefore, a retrospective analysis was performed of adenoviral gene therapy constructs produced in the same laboratory with similar methods. The aim was to assess the impact of various modifications on the physical and functional titer of the virus. It was found that genome size (designed within "the 105% golden rule") did not significantly affect the physical titer of the adenovirus preparations, regardless of the type of transgene (e.g., immunostimulatory vs. other), number of engineered changes, and size of the mutated virus genome. One statistically significant exception was noted, however. Chimeric adenoviruses (5/3) had a slightly lower physical titer compared to Ad5-based viruses, although a trend for the opposite was true for functional titers. Thus, 5/3 chimeric viruses may in fact be appealing from a safety versus efficacy viewpoint. Armed viruses had lower functional and physical titers than unarmed viruses, while five genomic modifications started to decrease functional titer. Importantly, even highly modified armed viruses generally had good titers compatible with clinical testing. In summary, this paper shows the plasticity of adenovirus for various vector, oncolytic, and armed oncolytic uses. These results inform future generations of adenovirus-based drugs for human use. This information is directly transferable to academic laboratories and the biomedical industry involved in vector design and production optimization.
Collapse
Affiliation(s)
- Camilla Heiniö
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Mikko Siurala
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Riikka Havunen
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Anniina Koski
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,3 Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Sadia Zafar
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Víctor Cervera-Carrascon
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Eleonora Munaro
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,4 Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland.,5 Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Wang K, Kievit FM, Jeon M, Silber JR, Ellenbogen RG, Zhang M. Nanoparticle-Mediated Target Delivery of TRAIL as Gene Therapy for Glioblastoma. Adv Healthc Mater 2015; 4:2719-26. [PMID: 26498165 DOI: 10.1002/adhm.201500563] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Indexed: 12/21/2022]
Abstract
Human tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is an attractive cancer therapeutic because of its ability to induce apoptosis in tumor cells while having a negligible effect on normal cells. However, the short serum half-life of TRAIL and lack of efficient in vivo administration approaches have largely hindered its clinical use. Using nanoparticles (NPs) as carriers in gene therapy is considered as an alternative approach to increase TRAIL delivery to tumors as transfected cells would be induced to secrete TRAIL into the tumor microenvironment. To enable effective delivery of plasmid DNA encoding TRAIL into glioblastoma (GBM), we developed a targeted iron oxide NP coated with chitosan-polyethylene glycol-polyethyleneimine copolymer and chlorotoxin (CTX) and evaluated its effect in delivering TRAIL in vitro and in vivo. NP-TRAIL successfully delivers TRAIL into human T98G GBM cells and induces secretion of 40 pg mL(-1) of TRAIL in vitro. Transfected cells show threefold increased apoptosis as compared to the control DNA bound NPs. Systemic administration of NP-TRAIL-CTX to mice bearing T98G-derived flank xenografts results in near-zero tumor growth and induces apoptosis in tumor tissue. Our results suggest that NP-TRAIL-CTX can potentially serve as a targeted anticancer therapeutic for more efficient TRAIL delivery to GBM.
Collapse
Affiliation(s)
- Kui Wang
- Department of Materials Science and Engineering; University of Washington; Seattle WA 98195 USA
| | - Forrest M. Kievit
- Department of Neurological Surgery; University of Washington; Seattle WA 98195 USA
| | - Mike Jeon
- Department of Materials Science and Engineering; University of Washington; Seattle WA 98195 USA
| | - John R. Silber
- Department of Neurological Surgery; University of Washington; Seattle WA 98195 USA
| | | | - Miqin Zhang
- Department of Materials Science and Engineering; University of Washington; Seattle WA 98195 USA
- Department of Neurological Surgery; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
5
|
Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in gene therapy for glioblastoma. Cancers (Basel) 2013; 5:1271-305. [PMID: 24202446 PMCID: PMC3875940 DOI: 10.3390/cancers5041271] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.
Collapse
Affiliation(s)
- Aneta Kwiatkowska
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
6
|
Yi BR, Choi KJ, Kim SU, Choi KC. Therapeutic potential of stem cells expressing suicide genes that selectively target human breast cancer cells: evidence that they exert tumoricidal effects via tumor tropism (review). Int J Oncol 2012; 41:798-804. [PMID: 22736197 PMCID: PMC3582792 DOI: 10.3892/ijo.2012.1523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/30/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide and is classified into ductal and lobular carcinoma. Breast cancer as well as lobular carcinoma is associated with various risk factors such as gender, age, female hormone exposure, ethnicity, family history and genetic risk factor-associated genes. Genes associated with a high risk of developing breast cancer include BRCA1, BRCA2, p53, PTEN, CHEK2 and ATM. Surgery, chemotherapy, radiotherapy and hormone therapy are used to treat breast cancer but these therapies, except for surgery, have many side-effects such as alopecia, anesthesia, diarrhea and arthralgia. Gene-directed enzyme/prodrug therapy (GEPT) or suicide gene therapy, may improve the therapeutic efficacy of conventional cancer radiotherapy and chemotherapy without side-effects. GEPT most often involves the use of a viral vector to deliver a gene not found in mammalian cells and that produces enzymes which can convert a relatively non-toxic prodrug into a toxic agent. Examples of these systems include cytosine deaminase/5-fluorocytosine (CD/5-FC), carboxyl esterase/irinotecan (CE/CPT-11), and thymidine kinase/ganciclovir (TK/GCV). Recently, therapies based on genetically engineered stem cells (GESTECs) using a GEPT system have received a great deal of attention for their clinical and therapeutic potential to treat breast cancer. In this review, we discuss the potential of GESTECs via tumor tropism effects and therapeutic efficacy against several different types of cancer cells. GESTECs represent a useful tool for treating breast cancer without inducing injuries associated with conventional therapeutic modalities.
Collapse
Affiliation(s)
- Bo-Rim Yi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | |
Collapse
|
7
|
Castro MG, Candolfi M, Kroeger K, King GD, Curtin JF, Yagiz K, Mineharu Y, Assi H, Wibowo M, Ghulam Muhammad AKM, Foulad D, Puntel M, Lowenstein PR. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2011; 11:155-80. [PMID: 21453286 DOI: 10.2174/156652311795684722] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.
Collapse
Affiliation(s)
- Maria G Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Niculescu-Duvaz D, Negoita-Giras G, Niculescu-Duvaz I, Hedley D, Springer CJ. Directed Enzyme Prodrug Therapies. PRODRUGS AND TARGETED DELIVERY 2011. [DOI: 10.1002/9783527633166.ch12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Sorriento D, Santulli G, Fusco A, Anastasio A, Trimarco B, Iaccarino G. Intracardiac injection of AdGRK5-NT reduces left ventricular hypertrophy by inhibiting NF-kappaB-dependent hypertrophic gene expression. Hypertension 2010; 56:696-704. [PMID: 20660817 DOI: 10.1161/hypertensionaha.110.155960] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several studies underline the role of the transcription factor NF-κB in the development of left cardiac hypertrophy (LVH). We have demonstrated recently that the RGS homology domain within the amino terminus of GRK5 (GRK5-NT) is able to inhibit NF-κB transcription activity and its associated phenotypes. The aim of this study was to evaluate the ability of GRK5-NT to regulate LVH through the inhibition of NF-κB both in vitro and in vivo. In cardiomyoblasts, GRK5-NT inhibits phenylephrine-induced transcription of both NF-κB and atrial natriuretic factor promoters, assessed by luciferase assay, thus confirming a role for this protein in the regulation of cardiomyocyte hypertrophy. In vivo, we explored 2 rat models of LVH, the spontaneously hypertensive rat and the normotensive Wistar Kyoto rat exposed to chronic administration of phenylephrine. Intracardiac injection of an adenovirus encoding for GRK5-NT reduces cardiac mass in spontaneously hypertensive rats and prevents the development of phenylephrine-induced LVH in Wistar Kyoto rats. This associates with inhibition of NF-κB signaling (assessed by NF-κB levels), transcriptional activity and phenotypes (fibrosis and apoptosis). Such phenomenon is independent from hemodynamic changes, because adenovirus encoding for GRK5-NT did not reduce blood pressure levels in spontaneously hypertensive rats or in Wistar Kyoto rats. In conclusion, our study supports the regulation of LVH based on the GRK5-NT inhibition of the NF-κB transduction signaling.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Clinical Medicine, Cardiovascular and Immunologic Sciences, Federico II University, Naples, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Beerens AMJ, Rots MG, Bermúdez B, de Vries EFJ, Haisma HJ. Secretion of thymidine kinase to increase the effectivity of suicide gene therapy results in the loss of enzymatic activity. J Drug Target 2008; 16:26-35. [PMID: 18172817 DOI: 10.1080/10611860701637768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Low efficiency of gene transfer is one of the major limitations of gene therapy. A solution to this problem may be transmission; by modification of the transgene, the gene product can be secreted and internalized by the surrounding cells. Cancer gene therapy using the herpes simplex thymidine kinase (HSV-TK) suicide gene is a promising treatment, and TK has been used in clinical trials with some success. However, this kind of therapy has limited efficacy due to the low level of gene transfer reached. A modified TK protein, capable of migrating from the producing cell to neighboring cells, would result in a greater proportion of cells affected by the treatment. As a first step towards transmission, we constructed a secretory form of HSV-TK by including the Igkappa leader peptide in the gene. An endoplasmatic reticulum export signal was added to the construct to further improve its secretion. Secretion and protein production in cancer cells, the enzymatic activity of the modified proteins and the ability of the modified TK to sensitize cancer cells to ganciclovir were tested. Addition of the Igkappa leader resulted in high levels of secretion of HSV-TK, with up to 70% of the total amount of protein secreted. Inclusion of an ER export signal did not further improve secretion. The enzyme activity of the secreted TK however, was decreased when compared to native TK. This study is the first to report on secretion of TK, and provides a first step in a novel strategy to improve the efficiency of cancer gene therapy. The loss of function in secreted TK however, may present a major hurdle in the development of a transmitted form of TK.
Collapse
Affiliation(s)
- A M J Beerens
- Department of Therapeutic Gene Modulation, University Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Hedley D, Ogilvie L, Springer C. Carboxypeptidase-G2-based gene-directed enzyme-prodrug therapy: a new weapon in the GDEPT armoury. Nat Rev Cancer 2007; 7:870-9. [PMID: 17943135 DOI: 10.1038/nrc2247] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-directed enzyme-prodrug therapy (GDEPT) aims to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. A gene encoding a 'suicide' enzyme is introduced into the tumour to convert a subsequently administered non-toxic prodrug into an active drug selectively in the tumour, but not in normal tissues. Significant effects can now be achieved in vitro and in targeted experimental models, and GDEPT therapies are entering the clinic. Our group has developed a GDEPT system that uses the bacterial enzyme carboxypeptidase G2 to convert nitrogen mustard prodrugs into potent DNA crosslinking agents, and a clinical trial of this system is pending.
Collapse
Affiliation(s)
- Douglas Hedley
- Institute of Cancer Research Haddow Laboratories, 15, Cotswold Road, Sutton, Surrey, UK
| | | | | |
Collapse
|
12
|
Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med 2007; 28:4-41. [PMID: 17306358 DOI: 10.1016/j.mam.2006.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/31/2022]
Abstract
The principle of using suicide genes for gene directed enzyme prodrug therapy (GDEPT) of cancer has gained increasing significance during the 20 years since its inception. The astute application of suitable GDEPT systems should permit tumour ablation in the absence of off-target toxicity commonly associated with classical chemotherapy, a hypothesis which is supported by encouraging results in a multitude of pre-clinical animal models. This review provides a clear explanation of the rationale behind the GDEPT principle, outlining the advantages and limitations of different GDEPT strategies with respect to the roles of the bystander effect, the immune system and the selectivity of the activated prodrug in contributing to their therapeutic efficacy. An in-depth analysis of the most widely used suicide gene/prodrug combinations is presented, including details of the latest advances in enzyme and prodrug optimisation and results from the most recent clinical trials.
Collapse
Affiliation(s)
- Daniel Portsmouth
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
13
|
Candolfi M, Curtin JF, Xiong WD, Kroeger KM, Liu C, Rentsendorj A, Agadjanian H, Medina-Kauwe L, Palmer D, Ng P, Lowenstein PR, Castro MG. Effective high-capacity gutless adenoviral vectors mediate transgene expression in human glioma cells. Mol Ther 2006; 14:371-81. [PMID: 16798098 PMCID: PMC1629029 DOI: 10.1016/j.ymthe.2006.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/03/2006] [Accepted: 05/06/2006] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common subtype of primary malignant brain tumor. Although serotype 5 adenoviral vectors (Ads) have been used successfully in clinical trials for GBM, the capacity of Ads to infect human glioma cells and the expression of adenoviral receptors in GBM cells have been challenged. In this report, we studied the expression of three molecules that have been shown to mediate adenoviral entry into cells, i.e., coxsackie and adenovirus receptor (CAR), integrin alphavbeta3 (INT), and major histocompatibility complex class I (MHCI), in rodent glioma cell lines and low-passage primary cultures and cell lines from human GBM. We correlated levels of expression of CAR, INT, and MHCI with transduction efficiency elicited by several high-capacity helper-dependent adenoviral vectors (HC-Ads). Expression levels of adenoviral receptors were variable among the different GBM cells studied. HC-Ad-mediated therapeutic gene expression was efficient, ranging between 20 and 80% of the total target cells expressing the encoded transgenes. Our results show no correlation between the levels of CAR, INT, or MHCI molecules and the levels of transgene expression or the number of GBM cells transduced. We conclude that expression levels of adenoviral receptors do not predict their transduction efficiency or biological function.
Collapse
Affiliation(s)
- Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - James F. Curtin
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Wei-Dong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Altan Rentsendorj
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Hasmik Agadjanian
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Lali Medina-Kauwe
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 8700 Beverly Boulevard, Davis Building, Room 5090, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2006; 5:535-57. [PMID: 16457645 PMCID: PMC1629033 DOI: 10.2174/156652305774964631] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted, this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.
Collapse
Affiliation(s)
- Gwendalyn D King
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
15
|
Castro M, Goverdhana S, Hu J, Jovel N, Yuan X, Lowenstein P. Gene therapy for pituitary tumors: from preclinical models to clinical implementation. Front Neuroendocrinol 2003; 24:62-77. [PMID: 12609500 DOI: 10.1016/s0091-3022(02)00106-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene therapy, which entails the use of nucleic acids as drugs, is a new approach to treat disease. Gene therapy has been successfully implemented in several preclinical animal models, including several paradigms of experimental pituitary tumors. In spite of these successes, several critical issues need to be addressed before gene therapy can become a clinical reality for the treatment of pituitary tumors. These include the development of safer and more effective gene delivery vectors, the uncovering of novel therapeutic targets, the development of molecular switches which will allow turning therapeutic transgene expression "on" and "off" as and when it is needed, and the ability to scale up the vector preparations devoid of any putative contaminants. There are still many basic science developments that must take place in order to allow this new therapeutic technology to make its way successfully into the clinical arena to treat pituitary disease. We envisage these developments taking place within the next five years, gene therapy for pituitary tumors will then form part of the armamentarium available to better treat and manage pituitary tumors.
Collapse
Affiliation(s)
- Maria Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, 90048-1860, USA.
| | | | | | | | | | | |
Collapse
|